秋田県における地上でのμ粒子検出頻度と天気ごとの地上気温、湿度、気圧との偏相関

Partial correlation between the frequency of muon detection on the ground in Akita Prefecture and the surface temperature, humidity, and atmospheric pressure for each weather

熊谷洸希1,渋谷遥斗1,森内厚佑1,水谷凜都1,登藤成琉1,丸田京華26,秋山翔希3,6,西隆博4,

田中香津生5,6, 遠藤 金吾1

Kouki KUMAGAI, Haruto SHIBUYA, Kousuke MORIUCHI, Rinto MIZUTANI, Naru TODO, Kyoka MARUTA, Shoki AKIYAMA, Takahiro NISHI, Kazuo S. TANAKA, Kingo ENDO

秋田県立秋田高等学校¹,東北大学工学部²,東北大学理学部³,理化学研究所⁴,ポール・シェラー研究所⁵,

加速キッチン合同会社

Akita Senior High School¹, Faculty of Engineering, Tohoku University², Faculty of Science, Tohoku University³, RIKEN (Institute of Physical and Chemical Research)⁴, Laboratory for Particle Physics, Paul Scherrer Institute⁵,

Accel Kitchen LLC⁶

Corresponding Author's e-mail: kinnoji@af.wakwak.com (Received: 10 September 2021; Accepted: 14 October 2021; Released: 5 November 2021)

[要約]

本研究では、秋田県立秋田高等学校生物実験室内にµ粒子検出器CosmicWatchを設置して主に宇宙線由来の µ粒子を観測した。µ粒子が地球上の大気を通過してくることから、地球の気象とµ粒子検出について何ら かの関係があると考えた。先行研究から、地上気温と気圧がともにµ粒子検出頻度と負の相関があることが 分かっている。そこで先行研究で行われていない、気象要素の中から1つの要素のみを抽出するという解析を 行い、新たに天気ごとの解析を行うことにした。

今回の研究では、1つの要素を抽出し、他の要素の影響を排除した場合でも、µ粒子検出頻度と地上気温、 気圧との間に負の相関があること、地上気温の方が気圧に比ベµ粒子検出頻度とより相関が大きいことなど が分かった。また、天気ごとにもµ粒子検出頻度の違いやµ粒子検出頻度と各気象要素との間の相関に違い が見られることが分かった。今回の研究を通じて、µ粒子観測時の気象条件の補正に関する基礎データを得 ることができた。

[キーワード] µ 粒子, 気温, 気圧, 天気, 偏相関

muon, temperature, atmospheric pressure, weather, Partial correlation

1. はじめに

宇宙線とは、宇宙空間を飛び回る高エネルギーの陽子や α 粒子などの粒子(一次宇宙線)と、それが大気粒子に衝突す ることで発生する粒子(二次宇宙線)の総称である。例えば 一次宇宙線は、高度約20 kmの大気中の窒素や酸素の原子核 などと衝突すると、 π 中間子やK中間子などを発生させ、さ らにこれらが崩壊することで電子や μ 粒子(ミューオン) などが発生する。これらを総称して二次宇宙線と呼び、この 過程のことを大気シャワー現象という(川田 2019)。この ような連鎖的な大気粒子との相互作用と粒子の崩壊に伴って、 二次宇宙線強度は減衰していく。電子の約200倍の質量で負 の電荷を持つ μ 粒子はエネルギー損失も緩やかである。また、 光速に近い速度の μ 粒子は相対論効果によって本来約2マ イクロ秒の寿命が大幅に伸びるため、多くが崩壊前に地表に 到達する。

μ粒子はX線をはるかに超える高い透過性を持つため、大

規模構造物の探査にしばしば用いられており、この透視手法 はミュオグラフィーと呼ばれている(田中 2012)。一般に、 X線を用いたX線フォトグラフィーは数mの対象物の内部構 造を透視するのに対して、ミュオグラフィーは数km~数+km の構造物をも透視することができる。これを利用してピラミ ッド(Patel. S.S. 2008)やダム、地下資源探査(Malmqvist, L 1979)、火山や断層構造(Tanaka, H.K.M 2011)のイメー ジングなどへの応用が期待されている。

μ粒子は、一次宇宙線と大気粒子との相互作用によって生 じたものであるため、地上で検出されるμ粒子の数は大気の 状態が影響していると考えられている。また、透過力が強い とはいえ、μ粒子は大気の層を通過してくるので、その間に 大気粒子との相互作用が起こることも考えられる。過去に、 京都府舞鶴市内において高層気温、地上気温とμ粒子検出数 との間に負の相関が見られたということが報告されている (藤波 1994)。また、気圧とμ粒子検出数との間にも負の相

2110004-1

©2021 The EGGS program committee of Tohoku University

関が見られたということが報告されている(藤波 1994)。 しかし、高層気温、地上気温と気圧との間には相関関係があ ることをはじめ、様々な気象要素が相互に影響を及ぼし合っ ている。そのため、先行研究では純粋に気温のみ、気圧のみ のように他の気象要素を除外して1つの要素とμ粒子検出数 との相関を検討することはできていなかった。

このことを踏まえ、本研究の目的を以下のように設定した。 まず、先行研究では用いられていなかった偏相関係数を導入 し、複数の気象要素の中から1つの要素の影響のみを検証す ることを第1の目的とした。また、先行研究では行われてい なかった天気ごとの解析を行い、天気と μ 粒子検出数がどの ような関係にあるのかを明らかにすることを第2の目的とし た。そして、気象と μ 粒子検出数との関係を総合的に理解し、 地上での μ 粒子の解析を行う際の補正の基礎となる情報を公 開することを第3の目的とした。本研究では、安価で小型で ある利点を持った μ 粒子検出器 CosmicWatch (S. N. Axani1 2018)を採用した。これにより、宇宙線研究の裾野を拡大し、 宇宙線を利用した技術開発、宇宙や素粒子に関する研究の促 進に貢献することを第4の目的とした。

2.実験装置と手法

2-1 実験装置

μ粒子検出器は CosmicWatch (図1:加速キッチン合同会社 より提供)を用いた。CosmicWatch はプラスチックシンチレ ーターと SiPM(シリコン光電子増幅器)で構成されている。 μ粒子がプラスチックシンチレーターを通過すると、シンチ レータ内の原子の軌道電子が、μ粒子のエネルギーによって よりエネルギーが高い状態の電子軌道に遷移(励起)し、そ の電子が元の基底状態に戻るときに、蛍光が発生し、これを SiPM によって電気信号へと変換する。この電気信号はアンプ 回路で増幅され、Arduino によって 10 bit のデジタル値に変 換して「電気信号の波高」として、USB-Micro B ケーブルを通 して、Windows PC に保存される(図2)。

図1 µ粒子検出器 CosmicWatch 外箱のサイズは、横 66.5 mm、高さ 52.0 mm、奥行き 74.0 mm である。写真の USB Micro-B ケーブルは背面に接続されてお り、これにより電源供給及びパソコンとの間でシリアル通信 を行う。パネルには、電気信号の総カウント、測定時間、カ ウントレートが表示される。

図2 CosmicWatch の内部構造(田中 2019) μ粒子によって発光するプラスチックシンチレーターのサイ ズは50 mm × 50 mm × 10 mm、プラスチックシンチレータ ーからの光を電気信号に変換する SiPM 受光面のサイズは6 mm × 6 mm である。SiPM からの電気信号を 10 bit のデジタル値 に変換する Arduino にはUSB Micro-B 端子接続部があり、こ こより Windows PC にデータが送られ、保存される。また、 Arduino には温度計も搭載されており、周囲の空気の温度も測 定できる。

2-2 実験1

秋田県秋田市に位置する秋田県立秋田高等学校理科棟1階 にある生物実験室にµ粒子検出器 CosmicWatch を設置した。 これにより、2020年10月17日~10月31日の期間、24時間 体制で電気信号の検出を行い、PC に記録した。同時に、 CosmicWatch 内蔵の温度計(Arduino Nano 33 BLE Sense)を 用いて、実験室内の室温を測定し、PC に記録した。

解析には、Google Colaboratory を利用して Python で記述 したコードを用いた。実験室内の室温と電気信号の検出回数 とを比較し、以下の式(1)を用いて相関係数 r を算出した。

$$r = \frac{s_{xy}}{s_x s_y} \quad \overrightarrow{\mathrm{TL}}(1)$$

 $(s_{xy}$ はxとyの共分散、 s_x 、 s_y はそれぞれx、yの標準偏差)

2-3 実験2

実験1と同様の実験セットアップで、2020年10月1日~ 2021年6月30日の期間、24時間体制でμ粒子の検出を行 い、PCに記録した。本研究の測定期間には冬季が多く含まれ ることから、CosmicWatch内蔵の温度計、湿度計、気圧計を用 いた場合、校舎内の暖房によって室温や湿度が屋外よりも大 きく変動してしまう。よって、気象庁で公開している秋田地 方気象台での地上気温、湿度、気圧のデータを用いることと した。

解析には、Google Colaboratory を利用して Python で記述 したコードを用いた。そして、 μ 粒子検出頻度と地上の気温、 気圧、湿度とを比較し、相関係数 r は式(1)を、偏相関係数 r_{ij} は式(2)を用いて算出した。

$$r_{ij} = \frac{-c_{ij}}{\sqrt{c_{ii}}\sqrt{c_{jj}}} \quad \vec{x} \quad (2)$$

2110004 -2

(ただし*c_{ii}*は相関行列の逆行列の(i, j) 要素である)

2-4 実験3

2020年10月1日~2021年6月30日の期間のµ粒子検出 頻度と、地上の気温、気圧、湿度、天気とを比較した。また、 天気ごとのµ粒子検出頻度の平均値を算出し、有意水準5% の一元配置分散分析で検定を行った。この際、地上の気温、 気圧、湿度は秋田地方気象台で公開されている秋田市の1時 間あたりのデータを用いることとし、相関係数rは式(1)を、 偏相関係数r_{ij}は式(2)を用いて算出した。これらの解析コー ドは Google Colaboratory を利用して Python で記述した。

3. 結果と考察

3-1 実験1

2020 年 10 月 17 日~10 月 31 日の期間の CosmicWatch に流 れた電気信号の波高と電気信号の検出回数との関係は図 3 の ようになった。CosmicWatch に流れた電気信号の波高が 200 ch 以下の領域で、検出回数が非常に多くなっていた。

本研究における μ 粒子の検出・データ収集の原理に照らし 合わせると、得られたデータの中には、 μ 粒子検出に由来す る電気信号だけでなく、装置内の熱によって生じた微弱な電 流(熱電流)などに由来する電気信号が含まれる可能性が考 えられた(以後、これを「ノイズ」と呼ぶ)。実際、CosmicWatch を用いた他の研究において、次のような報告がある。2 台の CosmicWatch で同時に計測を行うと、大気シャワーに由来す る μ 粒子は2 台の CosmicWatch で同時に電気信号として検出 される。しかしながら、一方の CosmicWatch のみで検出され る電気信号もある。その場合、概ね電気信号の波高が 200 ch 以下であり、これをノイズであると結論付けている(早坂 2020)。そこで本研究で用いる CosmicWatch においても、純 度の高い μ 粒子由来のデータを解析するために、ノイズと考 えられるデータをカットする基準を検討することとした。

先行研究(藤波 1994)では、地上気温とμ粒子検出数と の間に負の相関が見られたが、熱電流由来のノイズは、 CosmicWatch内蔵の温度計の示す値が高いほど多くなる傾向 があると考えられ、実験室内の室温とノイズの検出回数との 間には正の相関が見られるはずである。よって、熱電流由来 のノイズが多く検出されていると予想された電気信号の波高 200 ch 前後の領域について、電気信号の波高の範囲を区切っ て実験室内の室温と検出頻度との間の相関係数を算出した。 その結果、2020 年 9 月 16 日~9 月 30 日の期間の電気信号の 検出頻度(1 時間あたりの検出回数)と実験室内の室温との 間の相関係数は、電気信号の波高が 100~200 ch の範囲では 0.59(図4(A))と正の相関であった。しかし、電気信号の波 高が 200~300 ch の範囲では-0.03(図4(B))、電気信号の 波高が 300~400 ch の範囲では-0.30(図4(C))となり、電 気信号の波高が 200 ch 付近を境にして、先行研究と同様の傾 向である負の相関へと傾向が逆転していった(図4A~C)。

以上のことを総合的に考え、電気信号の波高が200 ch 以下 の大量に検出されたデータの大部分はノイズだと判断した。 以後は電気信号の波高が200 ch 以下のデータを除外したも のをμ粒子を検出したデータとして解析することとした。

図 4 電気信号の検出頻度と実験室内の室温との関係 電気信号の波高が、(A):100~200 ch の範囲、(B):200~300 ch の 範囲、(C):300~400 ch の範囲におけるデータを示している。

3-2 実験2

地上気温と μ 粒子検出頻度との間の相関係数は-0.73 であった(図 5(A))。湿度と μ 粒子検出頻度との間の相関係数 は 0.08 であった(図 5(B))。気圧と μ 粒子検出頻度との間 の相関係数は 0.06 であった(図 5(C))。

(A): μ粒子検出頻度と地上気温との関係
 (B): μ粒子検出頻度と湿度との関係
 (C): μ粒子検出頻度と気圧との関係

ある特定の要素の影響を除いた偏相関係数を求めたところ、 地上気温と μ 粒子検出頻度との間の偏相関係数 (±標準誤 差) は-0.75 (±0.01) であった。湿度と μ 粒子検出頻度と の間の偏相関係数は-0.08 (±0.01) であった。気圧と μ 粒 子検出頻度との間の偏相関係数は-0.24 (±0.01) であった (表 1)。

地上気温、湿度、気圧の中では、地上気温のみが µ 粒子検 出頻度との間で強い負の相関が見られ、湿度や気圧は µ 粒子 検出頻度との間にごく小さな正の相関しか見られなかった。 一方で、偏相関係数を調べたところ、地上気温及び湿度とµ 粒子検出頻度との間の偏相関係数は相関係数ほとんど変わら ないものの、気圧とµ粒子検出頻度との間の偏相関係数は相 関係数より変化し、負の相関を示すようになった。(表 1)。

表1 地上気温、湿度、気圧と μ 粒子検出頻度との間の相関係数と 偏相関係数。誤差は標準誤差である。

気象要素	相関係数	偏相関係数
地上気温[℃]	-0.73 ± 0.01	-0.75 ± 0.01
湿度 [%]	0.08 ± 0.01	-0.08 ± 0.01
気圧 [hPa]	0.06 ± 0.01	-0.24 ± 0.01

地上気温と μ 粒子検出頻度との間の負の相関については、 これまで以下のように考えられてきた。一次宇宙線が窒素や 酸素などの大気粒子と相互作用することで μ 粒子などの二 次宇宙線が発生する。地上気温の上昇により空気が膨張する と、より高高度で一次宇宙線と大気粒子との相互作用が起こ ることとなり、より高高度で μ 粒子が発生することとなる。 すると、 μ 粒子が地上に到達するまでの大気中の走行距離が 長くなり、その間に崩壊する μ 粒子が多くなる(藤波 1994, 湊 1993)。このことを一般に「気温効果」と呼ぶ。

また、気圧とµ粒子検出頻度との間の負の相関については、 これまで以下のように考えられてきた。気圧が高いというこ とは、上空にある大気が重い、すなわち上空にある大気粒子 数が多いということである。これにより、大気中を走行して くる µ 粒子は大気粒子と相互作用しやすくなり、µ 粒子の エネルギーが減少し µ 粒子が崩壊しやすくなる(藤波 1994, 湊 1993)。このことを一般に「気圧効果」と呼ぶ。

偏相関係数同士を比較すると、地上気温と気圧では、地上 気温の方がより強く μ 粒子検出頻度に影響していた。従来か ら言われていた「気温効果」、「気圧効果」は見られたもの の、影響としては「気温効果」の方が大きいことが明らかと なった。

地上気温に関しては、相関係数と偏相関係数がほぼ等しく、 除外した気圧の影響は地上気温と比してごく僅かであると考 えられた。また、気圧に関しては、相関係数よりも偏相関係 数の方が、負の方向に補正されていた。一般に、地上気温と 気圧との間には負の相関があることは広く知られていること から、除外した地上気温が気圧を通して µ 粒子検出頻度に影 響を及ぼしていたのだと考えられた。

3-3 実験3

天気ごと(晴れ:933時間、雨:689時間、曇り:1815時間、雪:680時間)に1秒あたりの μ 粒子検出頻度の平均値 を求めたところ、表2のようになった。

表 2 天気	ごとの1	1秒あたりの	μ 粒子検出頻度
--------	------	--------	----------

天気。	晴れり	曇り	雨	雪
μ粒子検出頻度[/秒]	0. 53	0. 54	0. 54	0. 57

 *:晴れ・快晴、曇り、雨、雪以外の天気は本集計から除外した。

 *:秋田地方気象台のデータは快晴も晴れとして集計されており、これに従った。

また、天気ごとに、1 秒あたりの µ 粒子検出頻度とその頻 度で検出した回数(度数)をヒストグラムに表したところ、 図6(A)のようになった。これを、地上気温が-2.5~0 ℃のデ ータのみ抽出してヒストグラムに表したところ、図6(B)のよ うになった。なお、一元配置分散分析を用い、5%有意水準で 検定を行ったところ、地上気温抽出前後ともに雪のときの µ 粒子検出頻度は他の天気のときと比べて、有意に差があった (図6(A)(B))。

さらに、天気ごとに地上気温、気圧、湿度と1秒あたりの μ粒子検出頻度との間の偏相関係数 (±標準誤差)を求めた ところ、表3のようになった。

図6 天気ごとの1秒あたりのµ粒子検出頻度とその度数 (A):地上気温で区別せずに集計したもの。

(B):地上気温が-2.5~0 ℃のデータのみを集計したもの。なお、氷 点下における雨の観測結果はほとんどなかったため、雨のデータは示 していない。

表3 天気ごとの地上気温、湿度、気圧と1秒あたりのµ粒子検出 頻度の間の偏相関係数。誤差は標準誤差である。

天気 ª	晴れり	曇り	চ্চ	曹
地上気温	-0. 58	-0. 71	-0.56	-0. 43
[℃]	± 0. 02	± 0. 01	± 0.03	± 0. 03
湿度	-0.06	-0. 12	-0. 10	-0. 10
[%]	± 0.02	± 0. 02	± 0. 03	± 0. 04
気圧	-0. 03	-0. 14	-0. 01	-0.38
[hPa]	± 0. 02	± 0. 02	± 0. 03	± 0.03

*:晴れ・快晴、曇り、雨、雪以外の天気は本集計から除外した。
 b:秋田地方気象台のデータは快晴も晴れとして集計されており、これに従った。

これまでほとんど行われてこなかった天気ごとの μ 粒子 検出頻度を検討するため、 μ 粒子検出頻度の平均値を算出し たところ、雪のときは他の天気のときよりも有意に μ 粒子検 出頻度が高かった(図 6(A)、表 2)。これに関して、雪は冬季 の特に気温が低い日に限定される傾向にあるため、雪である ということよりも、気温が低いことによって μ 粒子検出頻度 が高くなっている可能性が考えられた。そこで、地上気温を 2.5℃ずつ区切り、雪が降りうる気温で、データ数の多い-2.5 ~0℃の範囲で同様の解析を行った。その結果、依然として雪 のときは他の天気のときよりも有意に μ 粒子検出頻度が高 いことが明らかになった(図 6(B))。

天気ごとに、地上気温、湿度、気圧と μ 粒子検出頻度との 間の偏相関係数を比べたところ、雪のときのみ気温効果が低 くしか表れていなかった(表 3)。これは、雪は冬季にしか 見られず、地上気温の取りうる範囲が限定されており、相関 が見えにくくなっていたためであると考えられた。

また、気圧効果は雪のときのみ見られ、その他の天気では ごく弱い相関しか見えなかった(表3)。晴れのときは一般 に高気圧である、曇りや雨のときは一般的に低気圧であるな ど、気圧のとり得る範囲が限定されており、気圧効果が見え にくい状況にあることが原因だと考えられた。雪のときに関 しては、日本海側での降雪は、発達したシベリア気団からの 季節風によるものと、移動性の低気圧によるものに分類され (力石 2009)、一概に雪と言っても様々な気圧を取りうるこ とで気圧効果を見ることができたと考えられた。今後、これ を詳細に検証していくために、シベリア気団からの季節風に よる降雪が起こりにくい太平洋側のデータとの比較を行うな ど、解析を進めていく必要がある。

4. 結論

本研究でも、これまでの研究で言及されていた「気温効果」 「気圧効果」を観測することができた。また、この両者を比 べると、「気温効果」の方がµ粒子検出頻度により強い負の 相関をもたらしていることが明らかになった。 また、雪のときに地上気温のμ粒子検出頻度への影響は弱 くなり、雪以外のときに気圧のμ粒子検出頻度への影響は弱 くなることも明らかになった。しかし、これは雪自体の影響 というよりも、気温が低温の狭い範囲に限定されていること、 天気と気圧との間の相関によるものだと考えられた。

本研究で集められた気象要素とµ粒子検出数に関するデー タは、今後の宇宙線観測および解析において気象要素による 影響を考慮して補正を行う際の基礎的な資料として活用でき る。ミュオグラフィーのような宇宙線を活用した技術を発展 させていくことにも、本研究で得たデータは貢献できると考 えている。また、本研究では比較的安価な検出器である CosmicWatch を用いたが、今回得た成果を公表していくこと で、宇宙線研究の裾野を拡大し、宇宙線研究の分野がさらに 発展していくことにも貢献できると考えている。

引用及び参考文献

川田和正 (2019), チベット空気シャワー実験による高エネ ルギー宇宙線観測一銀河系内宇宙線起源の探求一, *RADIOISOTOPES*, 68, p829-841.

田中香津生,中高大・研究所による宇宙線観測活動コンソー シアム活動計画書 https://tanq.kaduo.jp/tanq-pamflet-2020-A4-lite.pdf

田中宏幸 (2012), ミュオグラフィーの現状と将来について, 物理探査, 65, 1&2 号 p93-102.

早坂大弥,後藤くるみ,倉嶋太郎,田中悠太郎,上林大悟 (2020),宇宙線を介して見る太陽活動の雲量への影響,山 形県立山形東高等学校校内発表会資料.

藤波直人,渡辺哲也,伊吹勝蔵,モニタリングポストの NaI(T1)検出器で測定された宇宙 線強度に対する気圧と 気温の影響,保健物理(1994)29, p309-313.

湊進(1993),地下 μ 粒子計数率の時間変動に関わる因子ごとの効果係数, *RADIOISOTOPES*, 62(6), p375-383.

力石 國男,北村 卓也(2009),日本海側における季節風型 降雪と低気圧型降雪の発生割合の地域性,雪氷研究大会講演 要旨集.

Malmqvist, L., Jönsson G, Kristiansson K and Jacobsson, L. (1979): Theoretical studies of in-situ rock density determination using cosmic-ray muon intensity measurements with application in mining geophysics, *Geophysics*, 44, p1549-69.

Patel. S.S. (2008): Ghost particles and pyramids, *Archaeology*, p30-35.

S.N. Axanil, K. Frankiewicz, J.M. Conrad (2018), The CosmicWatch Desktop Muon Detector: a self-contained, pocket sized particle detector, *Journal of Instrumentation*, 13(03), P03019.

Tanaka, H.K.M., H. Miyajima, T. Kusagaya, A Taketa, T. Uchida, M. Tanaka (2011): Cosmic muon imaging of hidden

seismic fault zones: Rainwater permeation into the mechanical fractured zones in Itoigawa-Shizuoka Tectonic Line, Japan, *Earth and Planetary Science Letters*, 306, p156-162.