Supplementary material

Cell Morphology-Based Screening Identified Vitetrifolin D from Vitex Rotundifolia as an Inhibitor of Phorbol Ester–Induced Downregulation of E-Cadherin in HHUA Endometrial Cells

Yusuke Hanaki,^{a*} Nichika Iwase,^a Yasunori Sugiyama,^a Sena Miyoshi,^b and Ryo C. Yanagita^a

^{*a*}Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Kagawa 761-0795, Japan. ^{*b*}Division of Applied Biological and Rare Sugar Sciences, Graduate School of Agriculture, Kagawa University, Kagawa 761-0795, Japan.

Figure S1. The ¹H NMR spectrum of isolated vitetrifolin D (500 MHz, CDCl₃)

Figure S2. The comparison of ¹H NMR spectra of isolated vitetrifolin D (black, 500 MHz, CDCl₃) and an authentic sample (green, 600 MHz, CDCl₃).

Table S1. Comparison of ¹H-NMR spectral data of vitetrifolin D

Н	reported ¹	isolated
	(500 MHz, CDCl ₃)	(500 MHz, CDCl ₃)
1a	<i>ca</i> . 2.03	overlapped ²
1b	<i>ca.</i> 2.03	overlapped ²
2a	<i>ca</i> . 1.63	overlapped ³
2b	<i>ca</i> . 1.63	overlapped ³
3a	<i>ca.</i> 1.48	overlapped ³
3b	<i>ca.</i> 1.48	overlapped ³
6	5.61 d (3.5)	5.60 d (2.8)
7	4.86 dd (13.0, 3.5)	4.85 dd (12.9, 3.2)
8	2.06 dq (13.0, 6.5)	overlapped ²
11a	ca. 1.49	overlapped ³
11b	<i>ca</i> . 1.43	1.42 m
12a	<i>ca.</i> 1.48	overlapped ³
12b	1.19 m	1.20 m
14	5.84 dd (17.0, 11.0)	5.84 dd (16.9, 11.2)
15a	5.18 dd (17.0, 1.5)	5.18 d (17.2)
15b	5.06 dd (11.0, 1.5)	5.06 d (10.9)
16	1.25 s	1.25 s
17a	0.90 d (6.5)	0.90 d (7.4)
18	1.07 s	1.06 s or 1.07 s
19	0.91 s	0.91 s
20	1.07 s	1.06 s or 1.07 s
COCH ₃	2.03 s	2.03 s
COCH ₃	1.99 s	1.99 s

¹Ono M. et al., Chem. Pharm. Bull., **49**, 1220–1222 (2001).

² These peaks were overlapped with those of acetyl groups.

³ These peaks were overlapped with that of residual water.