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INTRODUCTION

Non-alcoholic fatty liver disease (NAFLD) is the most 
common hepatic disorder, including the wide range of hepat-
ic diseases from simple steatosis to hepatic fibrosis and cir-
rhosis.1,2) Its prevalence reaches an average of 25% in adults, 
and continues to increase. Among NAFLD patients, approxi-
mately 25% of patients develop non-alcoholic steatohepatitis 
(NASH), and moreover, about 20% of NASH patients progress 
to cirrhosis.1,2)

NAFLD is considered to be a hepatic manifestation of 
ectopic fat accumulation without significant alcohol assump-
tion. Hepatic fat accumulation is known to occur via increased 
energy supply and lipogenesis together with suppressed fatty 
acid β-oxidation. The tricarboxylic acid (TCA) cycle interme-
diate citrate plays a crucial role in the generation of biochem-
ical energy and lipogenesis.3,4) For example, citrate is a prime 
carbon source for energy production and lipogenesis. More-
over, Citrate is capable of stimulating gluconeogenesis and 
reducing glycolytic flux. Furthermore, citrate can promote the 
de novo lipogenesis. Thus, it is plausible that citrate is a key 
metabolite in hepatic lipid accumulation.

Citrate has been reported to be transported from plasma 
membrane into cells via Na+-coupled di/tricarboxylate trans-

porters in mammal.5,6) So far, three different functional trans-
porters have been reported, which belong to a member of 
Na+-coupled di- and tri-carboxylate cotransporter gene fam-
ily (SLC13), NaDC1 (SLC13A2), NaDC3 (SLC13A3), and 
NaCT (SLC13A5). In particular, NaCT is the predominant cit-
rate carrier mainly expressed in the liver of humans and rode
nts.3,7,8) NaCT preferentially transports citrate over other inter-
mediates in TCA cycle, such as succinate, malate, and fuma-
rate. It has been reported that the NaCT mRNA expression 
level in the human liver is elevated in patients with NAFLD.9) 
Moreover, previous study has demonstrated that increased 
NaCT expression enhances the citrate uptake and de novo lipid 
synthesis in hepatocytes.10) In addition, several reports have 
shown that knockdown of NaCT expression ameliorates diet-
induced NAFLD in mice.11,12) Therefore, NaCT is proposed 
to be closely related to the development of NAFLD, and be a 
promising target for treating NAFLD.

NaCT has been reported to be induced in liver of type 2 
diabetic rats.10) In addition, type 2 diabetes is well recognized 
as an independent risk factor for NAFLD.13,14) Individuals with 
type 2 diabetes have higher prevalence rate of NAFLD, more 
than 70%. Taking these into consideration, NaCT is assumed 
to play a crucial role for developing NAFLD under type 2 dia-
betic condition. On the other hand, it has also been report-
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ed that approximately 10-50% of patients with type 1 diabe-
tes detected NAFLD, even though this proportion is quite less 
than that of the patients with type 2 diabetes.15,16) These obser-
vation suggest that type 1 diabetes also correlates with the 
prevalence of NAFLD. However, the mechanisms of hepatic 
fat accumulation under type 1 diabetic condition, particularly 
with respect to the participation of NaCT, have remain unclear.

In this study, we determined the hepatic expression level of 
NaCT and cellular uptake of citrate in a mouse model of type 
1 diabetes induced by streptozotocin (STZ). Moreover, we also 
investigated the plasma lipid levels in type 1 diabetic mice.

MATERIALS AND METHODS

Animals   All experiments were carried out in accordance 
with the principles and procedures in the National Institute of 
Health Guide for the Care and Use of Laboratory. All animal 
experimental protocols were reviewed and approved by the 
Animal Care and Use Committee of Ritsumeikan University 
(BKC2017-049).

Six-week-old male C57BL/6J mice (Japan SLC, Shizuoka, 
Japan) were divided into nondiabetic (non-treated: NT) and 
type 1 diabetic (STZ-treated) groups (n=20 in each group). 
Type 1 diabetic mice were induced by intraperitoneal injec-
tion of a single dose of STZ (200 mg/kg) (FUJIFILM Wako 
Chemicals, Osaka, Japan) in saline (pH 7.0).17) The nondiabet-
ic mice were injected with saline. The development of diabetes 
was confirmed by blood glucose level of >400 mg/dL in fast-
ing mice at 4 d after STZ injection.

Real-Time Reverse Transcription (RT)-PCR Anal-
ysis   Total RNA was isolated from liver using Sepasol-
RNA I Super G (Nacalai Tesque, Kyoto, Japan) accord-
ing to the manufacturer’s instructions. First-strand cDNA 
was synthesized using ReverTra Ace (TOYOBO Co., Ltd,  
Osaka, Japan) with and oligo(dT)20 primer. Total RNA (2 μg) 
was used for a reverse transcription reaction (20 μL). Real-
time RT-PCR was performed on Applied Biosystems Ste-
pOne Real-time PCR System with PowerUp SYBR Green 
Master Mix (Applied Biosystems, Foster City, CA, USA) 
according to the following conditions: 95°C for 10 min and 
95°C for 15 s, 60°C for 60 s, repeated for 45 cycles. This 
was followed by the additional extension steps at 95°C for 
15 s and 60°C for 60 s. The specific primer sequences were 
as follows: GAPDH (forward 5’-CCATCACCATCTTCCAG-
GAG-3’; reverse 5’-CCTGGTTCACCACCTTCTTG-3’), 
NaCT (forward 5’-GTCAGTCTCCCTTTCACGCG-3’; 
reverse 5’-CTCCACAGCTGTATTGGCGG-3’), NaDC3 (for-
ward 5’-CTTCCTCGACACCAACTTCC-3’; reverse 5’-CTT-
GTTCTGCACGTTTGCCA-3’). The target mRNA expres-
sion levels were normalized to the mRNA expression level of 
GAPDH. The relative mRNA expression level was presented 
as a ratio of STZ-treated to NT mice (STZ/NT).

Western Blotting   Western blotting of mouse liver was 
performed using monoclonal antibody against SLC13A5/
NaCT (clone2G4, catalog #PA5-60679, SIGMA-Aldrich, 
St. Louis, MO, USA). Total protein were extracted with 
RIPA buffer (0.1% TritonX-100, 0.5% sodium deoxycho-
late, 0.1% sodium dodecyl sulphate, 150 mM NaCl, 50 mM 
Tris-HCl) containing protease inhibitor cocktail (Nacalai  
Tesque) and were quantified with a BCA protein assay kit  
(Nacalai Tesque). The samples were run on 10% SDS-PAGE 
and then transferred to a polyvinylidene difluoride membrane. 

After a blocking procedure, the membrane was reacted with 
anti-NaCT antibody (1:250) or anti-β-actin (1:1,000) (catalog 
#4967, Cell Signaling Technology, Inc., Danvers, MA, USA) 
overnight at 4˚C, washed and then incubated at room temper-
ature with horseradish peroxidase (HRP)-conjugated second-
ary anti-mouse IgG antibody (1:1,000) (catalog #7076, Cell  
Signaling Technology) or anti-rabbit IgG (1:1,000) (catalog 
#7074, Cell Signaling Technology). The bands were detected 
using ImmunoStar LD (FUJIFILM Wako Chemicals, Osaka).

Uptake Experiment of Citrate   Mouse primary hepato-
cytes were isolated by collagenase perfusion according to the 
previous report.18) The cells were suspended at 1 x 105 cells/
mL in transport buffer (25 mM HEPES/Tris (pH 7.4), 140 mM 
NaCl, 5.4 mM KCl, 1.8 mM CaCl2, 0.8 mM MgSO4, and 5 
mM glucose). Uptake of [14C]citrate (specific activity: 116.4 
mCi/mmol, PerkinElmer, Boston, MA, USA) was initiated 
by mixing 1 mL of cell suspension (1 x 105 cells) and 1 mL 
of uptake buffer containing [14C]citrate. After 15 min incuba-
tion at 37˚C, the mixture was then filtered using Whatman® 
glass microfiber filter (GF/F) and washed twice with an excess 
volume of ice-cold transport buffer. The washed filters were 
transferred to a counting vial, and the radioactivity associat-
ed with the cells was counted by liquid scintillation spectrom-
etry (Model LSC6000, Beckmann, Palo Alto, CA, USA). Na+-
dependent uptake of [14C]citrate was obtained by subtracting 
the uptake in the N-methyl-d-glucamine chloride-containing 
buffer from the uptake in the NaCl-containing buffer. The rela-
tive Na+-dependent [14C]citrate uptake ratio was presented as a 
ratio of STZ-treated to NT mice (STZ/NT).

Biomedical Analyses in Blood Samples   Blood samples 
were collected from NT and STZ-treated mice at 0, 1, 2, 4, 6 
and 8 week after STZ injection. Plasma glucose, triglyceride, 
cholesterol and nonesterified fatty acid (NEFA) levels were 
measured by using LabAssay Glucose, LabAssay Triglyceride, 
LabAssay Cholesterol and LabAssay NEFA (FUJIFILM Wako 
Chemicals), respectively.

Data Analysis   ANOVA was used to test the statistical sig-
nificance of differences between groups. Two-group compari-
sons were performed with Student’s t test. Multiple compari-
sons among control groups and other groups were performed 
with Dunnett’s test.

RESULTS

NaCT Expression in Liver of Type 1 Diabetic Model 
Mice   Initially, we determined the expression level of NaCT 
in STZ-induced type 1 diabetic model mice. As shown in 
Fig. 1A, the mRNA expression level of NaCT in STZ-treat-
ed mice was gradually decreased after STZ treatment, and its 
expression level at 8 week was about 5-fold lower than that 
at 0 week. On the other hand, other Slc13a transporter fam-
ily NaDC3 mRNA expression was increased at 2 week after 
STZ treatment, and its expression level was kept up to 8 week 
(Fig. 1B). As well as mRNA expression, we also observed that 
NaCT protein expression in STZ-treated mice was decreased 
in a time-dependent manner (Fig. 2).

[14C]Citrate Uptake in Hepatocytes of Type 1 Diabetic 
Model Mice   We also assessed the citrate uptake in hepat-
ocytes isolated from STZ-treated mice. In preliminary exper-
iment, we confirmed that the cellular uptake of [14C]citrate 
in hepatocytes was linear for up to 15 min (data not shown). 
Therefore, all uptake studies were performed with a 15-min 
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incubation period. Since the citrate transport via NaCT is driv-
en by an inward electrogenic Na+ gradient, we determined 
the Na+-dependent uptake of [14C]citrate in hepatocytes. The 
Na+-dependent citrate uptake of hepatocytes from STZ-treated 
mice was similar to that of hepatocytes from NT mice during 
the experimental period (Fig. 3).

Plasma Lipid Levels in Type 1 Diabetic Model Mice   
The plasma triglyceride, cholesterol, and NEFA levels in STZ-
treated mice were evaluated. As shown in Table 1, the plasma 
triglyceride, cholesterol and NEFA concentrations in type 1 
diabetic mice were much higher than those in NT mice during 
the experimental period. In particular, the plasma triglyceride 
level was approximately 2-3 fold higher in STZ-treated mice 
than in NT mice. We also confirmed that body weight of STZ-
treated mice was significantly lower than that of NT mice.

DISCUSSION

In this study, we investigated the relationship between 
hepatic NaCT expression level and lipid accumulation in 
type 1 diabetic model mice. We observed that the mRNA and 
protein expression of NaCT in mouse liver were gradually 
decreased after STZ treatment (Figs. 1 and 2). These results 
differ from the previous report demonstrating the increased 
expression of hepatic NaCT in type 2 diabetic rats.10) This may 
be due to the difference of the regulation of glucagon secre-

tion between type 1 diabetes and type 2 diabetes. It has been 
reported that the increased hepatic NaCT expression in type 
2 diabetic mice is induced by glucagon via the activation of 
cAMP-responsive element-binding protein.10) Patients with 
type 2 diabetes showed higher day-long plasma glucagon lev-
els,19,20) and this would contribute to the increased expression 
of NaCT under type 2 diabetic condition. On the other hand, 
type 1 diabetes is associated with dysfunction of pancreatic 
alpha cells,21) and the glucagon secretion profile in type 1 dia-
betes seems to be different from that in type 2 diabetes. For 
example, it has been reported that glucagon level in type 1 dia-
betes is suppressed by elevation of plasma free fatty acids lev-
els, and its suppression level is comparable to that in nondi-
abetic individuals.22) In addition, the increment of glucagon 
secretion in response to hypoglycaemia is absent in type 1 
diabetes patients.19,23) These specific condition in type 1 dia-
betes may contribute to the decreased expression of NaCT in 
liver. However, the difference of plasma glucagon concentra-
tion profile between type 1 and type 2 diabetic animal mod-
el is unknown. In addition, the downregulation mechanism 
of NaCT in liver remains poorly understood, although the 
upregulation mechanisms of NaCT have been elucidated.5,24) 
Therefore, further studies are needed to clarify the glucagon 
secretion profile and glucagon-related mechanism for down-
regulation of hepatic NaCT in type 1 diabetic mice.

While the hepatic NaCT expression was decreased in STZ-
treated mice, the citrate uptake of hepatocytes isolated from 
STZ-treated mice was not different from that isolated from NT 
mice (Fig. 3). We considered that this result would be attrib-
uted to the involvement of other transporters belonging to 
SLC13 family. Among the SLC13 family, NaDC3 is expressed 
in various tissues, including liver.5,6) NaDC3 has high affinity 
for four carbon dicarboxylates, such as succinate, malate and 
fumarate, and it also transports citrate with lower affinity com-
pared with succinate. NaCT is known as the dominant citrate 
transporter in human hepatocytes, whereas it has been reported 
that NaDC3 contributes to citrate uptake in mouse hepatocytes 
as well as NaCT.4) When we evaluated the expression of hepat-
ic NaDC3 in STZ-treated mice, the elevated mRNA expression 
was observed compared with NT mice (Fig. 1B). We assume 
that this is a compensatory response to restore the uptake level 
of citrate in hepatocytes, responding to the reduction of NaCT 

Fig. 1.   mRNA Expression of NaCT (A) and NaDC3 (B) in Liver of Type 1 Diabetic Model Mice
Total RNA was isolated from liver of NT mice and STZ-treated mice at 0, 1, 2, 4, 6, and 8 weeks after STZ treatment. Real-time RT-PCR was performed using specific primers 

for NaCT, NaDC3 and GAPDH. Data were normalized to GAPDH. The relative mRNA expression level was presented as a ratio of STZ-treated to NT mice (STZ/NT).

Fig. 2.   Protein Expression of NaCT in Liver of Type 1 Diabetic Model 
Mice.

Protein was isolated from liver of NT mice and STZ-treated mice at 0, 1, 2, 4, 6, 
and 8 weeks after STZ treatment. NaCT and β-actin protein expression was detected by 
Western blot analysis.
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expression. This result supports our view that NaDC3 is par-
ticipated in the citrate transport in liver of mice with type 1 
diabetes.

We also observed the plasma triglyceride, cholesterol and 
NEFA levels were higher in STZ-treated mice than in NT mice 
(Table 1), although the citrate uptake in hepatocytes was not 
changed. Although it is not clear why the plasma lipid lev-
els were increased without the enhancement of hepatocellu-
lar uptake of citrate, we assume that this would be due to the 
increased expression of NaDC3 in hepatocytes. NaDC3 trans-
ports not only citrate but also other intermediates in TCA cycle 
with high affinity into hepatocytes,5,6) and these intermediates 
may contribute to the citrate and lipid synthesis in hepatocytes 
under type 1 diabetic condition.

Taken together, unlike type 2 diabetes, it seems that NaCT 
is not closely related to the pathogenesis of NAFLD under 
type 1 diabetic condition. However, it needs to pay atten-
tion that we determined the lipid accumulation by the plas-
ma triglyceride, cholesterol and NEFA levels, not by hepatic 
lipid levels. In addition, mice used in this study were young 
(6-week-old) and the experimental period was relatively short 
(8 weeks). Therefore, we are proceeding the evaluation of the 

expression level of NaCT in liver and hepatic lipid accumu-
lation in aged mice (20-week-old) with STZ-induced type 1 
diabetes for longer period (up to 4 months). Nevertheless, our 
present findings make a contribution to the elucidation of the 
mechanisms of NAFLD development from type 1 diabetes.
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