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INTRODUCTION

Although high-energy ionizing radiation, such as γ-rays, 
X-rays, and electron beams, is utilized to treat various malig-
nancies by damaging DNA, thereby causing cells to die or stop 
dividing, it can also have long-term side effects, causing inju-
ry to normal tissues, inflammation, fibrosis,1) and even tumo-
rigenesis.2) There is also an increased risk of metastasis after 
local tumor irradiation under experimental or clinical condi-
tions,3) probably because of the migratory ability and invasive-
ness of surviving cancer cells are enhanced after irradiation.4)

Irradiation activates multiple signaling pathways that regu-
late cellular functions,5) and there appear to be complex rela-
tionships among the tumor microenvironment, production of 
proteases, and induction of epithelial–mesenchymal transition 
(EMT). EMT is a morphological program that enables epi-
thelial cells to acquire a highly motile mesenchymal pheno-
type, including dissolution of intracellular junctions, reorgan-
ization of the actin cytoskeleton, and acquisition of increased 
cell motility.6) EMT is an important mechanism of radiation-
induced cell migration/invasion.7,8) Thus, induction of EMT 
may be one of the reasons why ionizing radiation enhances the 
metastatic potential of breast cancer cells,9) hepatocellular car-
cinoma,10) glioma cells,11) and colorectal cancer cells.12) Trans-
forming growth factor β1 (TGF-β1) also plays a significant 
role in the induction of EMT.13) TGF-β1 is a multifunctional 
cytokine that is involved in regulating many biological pro-

cesses, including cell growth, differentiation, apoptosis, home-
ostasis,14) angiogenesis,15) and tissue fibrosis.16) We have shown 
that TGF-β1 also induces EMT in human lung cancer A549 
cells,17,18) and it was recently reported that ionizing radiation 
promotes migration/invasion through TGF-β1-mediated induc-
tion of EMT in human lung cancer cells.19,20) Moreover, plas-
ma TGF-β1 levels and lung metastasis of mice are increased 
by irradiation.21) Therefore, it seems likely that activation of 
TGF-β1 signaling is involved in the enhancement of tumor 
metastasis following irradiation.

In humans, the transient receptor potential (TRP) channel 
superfamily is subdivided into six subfamilies, consisting of 
the canonical TRP (TRPC), vanilloid TRP (TRPV), melastatin 
TRP (TRPM), ankyrin TRP (TRPA), polycystic TRP (TRPP), 
and mucolipin TRP (TRPML) groups.22) TRP channels have an 
extraordinary diversity of functional properties and individu-
al channels have roles in various physiological and patholog-
ical conditions.23) TRP channels are activated by chemical or 
physical stimuli, including oxidative stress, intracellular cal-
cium influx, temperature, pH, mechanical stimulation, osmot-
ic pressure, pain, etc.24,25) Increased expression of members of 
the TRPV, TRPM, and TRPC families is associated with pro-
liferation, malignancy, and metastasis of certain epithelial can-
cers.26–28) Activation of TRPV family members contributes 
to multiple physiological and pathological cellular respons-
es, including promotion of cell migration/invasion in various 
types of cancer cells via Ca2+ signaling.29–31)
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We have reported the involvement of the transient recep-
tor potential vanilloid 1 (TRPV1) channel in cellular respons-
es to DNA damage caused by irradiation in human lung can-
cer A549 cells, showing that γ-irradiation activates the TRPV1 
channel.32) However, the role of TRPV channels in cellu-
lar responses to irradiation remains to be fully established. 
In particular, although it is clear that TRPV family mem-
bers are closely related to tumor progression, it has not been 
established whether TRPV1 and TRPV4 channels are direct-
ly involved in irradiation-induced cell migration/invasion and 
tumor metastasis. Therefore, in this study, we investigated the 
involvement of TRPV1 and TRPV4 channels in γ-irradiation-
induced migration of human lung cancer cells.

MATERIALS AND METHODS

Reagents and Antibodies   Dulbecco's modified Eagle's 
medium (DMEM), human recombinant SB431542, AMG9810, 
SB366791, BCTC, GSK1016790A and RN-1734 were pur-
chased from Wako Pure Chemical (Osaka, Japan). Capsaz-
epine (CPZ) was purchased from Cayman Chemical Co.  
(Michigan, USA). GSK2193874 was purchased from Sigma  
Aldrich (USA). Fetal bovine serum (FBS) was purchased 
from Biowest (Nuaillé, France) and Life Technologies  
(Gibco BRL, Grand Island, NY, USA). Rhodamine–phalloidin 
was purchased from Cytoskeleton, Inc. (Denver, CO). The pri-
mary antibodies used were anti-β-actin monoclonal antibody 
(FUJIFILM Wako Pure Chemical, Osaka, Japan), TRPV1 anti-
body (Novus), and TRPV4 antibody (Sigma Aldrich, USA).

Animals   Male C57BL/6 mice were purchased from  
Sankyo Labo Service (Japan) and used at 6 weeks of age. 
They were housed in plastic cages with paper chip bedding 
and bred in rooms kept at a temperature of 23 ± 2°C with a 
relative humidity of 55 ± 10% under a 12 h light-dark cycle. 
They were allowed free access to tap water and normal diet, 
CE-2 (CLEA Co. Ltd.). The mice were treated and handled 
according to Tokyo University of Science’s institutional eth-
ical guidelines for animal experiments and with the approv-
al of Tokyo University of Science’s Institutional Animal Care 
and Use Committee (permission numbers S19006, S18008, 
S17008).

Cell Culture and Irradiation   A549 human adenocar-
cinoma cells and B16 mouse melanoma cells were grown in 
DMEM supplemented with 10% fetal bovine serum, penicillin 
(100 units/mL) and streptomycin (100 mg/mL) in a humidified 
atmosphere of 5% CO2 in air at 37°C. The cells were irradiat-
ed with 1.0-10.0 Gy of γ-rays from a 137Cs source (0.72 Gy/
min) for 100-900 sec at room temperature in a Gammacell 40 
γ-irradiation system (Nordin International, Inc.).

Cell Migration Assay   γ-Irradiation-induced cell migra-
tion was analyzed by using 24-well Transwell plates (6.5 mm 
diameter; 8 μm pore size polycarbonate membrane, Corning, 
Lowell, MA). The upper compartment was seeded with A549 
cells (2 × 104 cells) in basal culture medium. After 24 h, the 
medium was replaced with fresh medium. The medium in the 
upper chamber contained 5% FBS instead of 10% FBS. After 
incubation for a further 24 h, cells were fixed with 4% par-
aformaldehyde for 10 min at room temperature, and incubat-
ed with 1 μg/mL 4’,6-diamidino-2-phenylindole (DAPI) and 
50 μg/mL propidium iodide (PI) for 30 min at room tempera-
ture. Non-migrated cells on the upper surface of the membrane 
were removed and cells that had migrated through the mem-

brane to the lower surface were counted using a fluorescence 
microscope (BZ-9000; Keyence).

Fluorescence Imaging   For F-actin staining and immu-
nofluorescence staining, cells were fixed with 4% paraform-
aldehyde for 10 min at room temperature, and permeabilized 
with 0.5% Triton X-100 for 5 min. For staining of F-actin, 
fixed cells were incubated with 100 nM Rhodamine–phal-
loidin for 30 min at room temperature. Counterstaining with 
Hoechst 33342 (10 µg/mL) was used to verify the location and 
integrity of nuclei. Stained cells were analyzed using a con-
focal laser-scanning microscope (TCS SP2; Leica, Mannheim,  
Germany) equipped with a HCX PLApo 63×1.32 NA oil 
objective lens. Leica software (TCS SP2, version 2.6.1) was 
used for image acquisition and processing. Some images 
were obtained by using a confocal laser-scanning microscope 
(FV1000-D, Olympus, Tokyo, Japan). We estimated actin 
remodeling in terms of the formation of actin stress fibers, not 
increase of fluorescence intensity.

Small Interfering RNA (siRNA) Transfection   SiR-
NAs targeting human TRPV1 and TRPV4 channels and neg-
ative control siRNA (TriFECTa Kit[REMOVED EQ FIELD] 
DsiRNA Duplex; Duplex Name for TRPV1: NM_080704 
duplex 1-3, Duplex Name for TRPV4: hs.Ri.TRPV4.13.1-
3) were purchased from Integrated DNA Technologies. Cells  
(5 × 104 cells per 40 mm dish) were incubated in culture medi-
um for 48 h. The siRNA duplex oligonucleotides (10 nM) for 
knockdown of human TPPV1 channel and TRPV4 channel 
were transfected into A549 cells by using HiPerFect Transfec-
tion Reagent (Qiagen) according to the manufacturer's instruc-
tions. Forty-eight hours after transfection, the reduction of 
TRPV1 was confirmed by western blotting. The expression of 
TRPV1 and TRPV4 channels in each A549 cells transfected 
with 3 different siRNA targeting TRPV1 were decreased to 51, 
50, or 41% and targeting TRPV4 were decreased to 81, 66 or 
60% compared with cells transfected with scramble siRNA.

B16 Melanoma Pulmonary Metastasis Model   Cells 
were pretreated with 10 µM BCTC and 1 µM RN-1734 for 
30 min, and then irradiated with 1 Gy of γ-rays. After incu-
bation for 48 h, the cells were suspended at 5.0 × 105 cells/
mL in PBS. Then 200 μL of this cell suspension was injected 
into C57BL/6 mice via the tail vein. The mice were sacrificed 
two weeks later and the lungs were harvested. The number of 
black colonies in the lungs was counted.

Statistics   Values are given as the mean ± SE. Compar-
ison between two values was performed by means of the 
unpaired Student’s t-test. The statistical significance of dif-
ferences between control and other groups was calculated by 
using Dunnett’s test with the Instat version 3.0 statistical pack-
age (GraphPad Software, San Diego, CA, USA). The criterion 
of significance was set at P < 0.05.

RESULTS

γ-Irradiation Induces Increased Motility of A549 Cells   
It is well established that irradiation enhances the migration of 
cancer cells.4,9–12) We examined the effect of γ-irradiation in the 
range of 1.0-10.0 Gy on the motility of A549 cells by using 
Transwell assay, which can measure cell migration regard-
less of cell proliferation, because the migration is dependent 
on the concentration gradient of FBS. The number of migrated 
cells was maximum at 2.0 Gy, while migration was decreased 
at 8.0 Gy (Fig. 1A). These results are consistent with the 
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γ-irradiation-induced decrease of cell viability due to irrevers-
ible cell damage.36) Based on the results in Fig. 1A, we chose 
a dose of 2.0 Gy for subsequent experiments using A549 cells.

Involvement of TRPV1 and TRPV4 Channels in the 
γ-Irradiation-Induced Motility Increase of A549 Cells   To 
investigate the role of TRPV1 and TRPV4 channels in cancer 
cell migration, we employed Transwell assay to examine the 
effects of TRPV1 and TRPV4 channel inhibitors. In addition, 
it is well known that Rho/ROCK signaling plays a critical role 
in the regulation of cell motility, invasion, and metastasis of 
cancer via regulation of actin remodeling.33–35) Actin remod-
eling is a method in which spherical proteins polymerize to 
form filamentous actin stress fibers, and cells move due to the 
tension. This is used as an indicator of the metastatic potential 
of cancer cells. Four highly specific TRPV1 inhibitors, cap-
sazepine, BCTC, SB366791 and AMG9810, all suppressed the 
γ-irradiation-induced increase of cell motility and actin remod-
eling. The TRPV4 inhibitors RN-1734 and GSK2193874 had 
similar effects (Fig.1B, 1C, 2A, 2B). In addition, the prolif-
eration ability of A549 cells did not decrease significantly by 
TRPV1 and TRPV4 channels inhibitors36) (Supplementary Fig. 
1).

To confirm the involvement of TRPV1 and TRPV4 chan-
nels in γ-ray-induced migration, A549 cells were transfected 
with siRNA targeting each channel. The number of migrated 
cells was not significantly different in irradiated knockdown 
cells from that in the corresponding non-irradiated knock-
down cells (Fig. 3A, 3B). These results support the idea that 
knockdown of expression of TRPV1 and TRPV4 blocks the 
γ-irradiation-induced enhancement of cell motility.

Fig. 1.   Effect of TRPV1 and TRPV4 Inhibitors on γ-Irradiation-Induced 
Migration of A549 Cells

(A) A549 cells were irradiated with 1-10 Gy of γ-irradiation, and cell migration was 
examined by Transwell assay as described in Materials and Methods. The lower mem-
brane surfaces were photographed through a microscope, and migrated cells in each 
field were counted. Error bars indicate ± SE. Significant difference from control: ** (P 
< 0.01). (B) A549 cells were pretreated with CPZ (10 μM), BCTC (10 μM), SB366791 
(1 μM) or AMG9810 (10 μM) at 30 min before γ-irradiation, and cell migration was 
examined as above. Typical data of 3 independent experiments are shown. Error bars 
indicate ± SE. Significant difference from non-irradiated cells: *** (P < 0.001). Signifi-
cant difference from irradiated cells: ### (P < 0.001). (C) A549 cells were pretreated 
with RN-1734 (10, 20 μM) or GSK2193874 (1, 5 μM) at 30 min before γ-irradiation, 
and cell migration was examined as described above. Error bars indicate ± SE (n=3). 
Significant difference from non-irradiated cells: *** (P < 0.001). Significant difference 
from irradiated cells: ### (P < 0.001).

Fig. 2.   Effect of TRPV1 and TRPV4 Inhibitors on γ-Irradiation-Induced 
Actin Remodeling in A549 Cells

A549 cells were pretreated with CPZ (10 μM), BCTC (10 μM), SB366791 (1 μM) 
or AMG9810 (10 μM) (A) or with RN-1734 (10, 20 μM) or GSK2193874 (1, 5 μM) 
(B) at 30 min before γ-irradiation. The cells were irradiated with 2 Gy γ-rays and in-
cubated for 48 h. F-actin was stained with Rhodamine-phalloidin, and images were 
acquired with a confocal laser-scanning microscope at 63 × magnification. Typical data 
from several independent experiments are shown.
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Involvement of TRPV1 and TRPV4 Channels in 
Enhancement of Metastasis Induced by γ-Irradiation in 
Vivo   Finally, we examined whether TRPV1 and TRPV4 chan-
nel inhibitors can suppress the γ-irradiation-induced enhance-
ment of metastatic ability of B16 cells in vivo. B16 cells were 
subjected to 1 Gy of γ-irradiation and incubated for 48 h pri-
or to injection into the tail vein of C57BL/6 mice. The num-
ber of lung colonies was increased in the mice injected with 

γ-irradiated cells compared with that in the mice injected with 
non-irradiated cells, indicating that metastatic ability of B16 
cells is enhanced by irradiation.

When the B16 cells were treated with TRPV1 and TRPV4 
channel inhibitors before γ-irradiation, the increase of the 
number of lung colonies was suppressed (Fig. 4A, B), strong-
ly supporting the view that TRPV1 and TRPV4 channels are 
involved in the irradiation-induced enhancement of metastat-
ic ability.

DISCUSSION

Activation of TRPV channels, which are nonselective cat-
ion channels, can mediate increased Ca2+ influx under patho-
logical conditions, and this can lead to increased cell motili-
ty, resulting in metastasis of epithelial cancer.29–31) Therefore, 

Fig. 3.   Knockdown of TRPV1 and TRPV4 Channels Suppresses 
γ-Irradiation-Induced Migration of A549 Cells

siRNA duplex oligonucleotides for knockdown of human TPPV1 (A) or TRPV4 (B) 
were transfected into A549 cells. Then, at 48 h after transfection, the cells were ir-
radiated with 2.0 Gy. After incubation for 48 h, cell migration was examined using 
Transwell systems. (A) The data are presented as percentages of the negative con-
trol (non-irradiated cells transfected with scramble siRNA). Values are means ± S.E. 
(n=10-30) from 2-6 independent experiments (scramble siRNA; 6 independent ex-
periments, siRNA1; 2 independent experiments, siRNA2; 5 independent experiments, 
siRNA3; 6 independent experiments). Significant difference from non-irradiated cells:  
*** (P < 0.001). Significant difference from irradiated cells: # (P < 0.05) or ## (P < 
0.01). (B) Values are means ± S.E. (n=5). Typical data from three independent experi-
ments. Significant difference from non-irradiated cells: *** (P < 0.001). Significant dif-
ference from irradiated cells: ### (P < 0.001).

Fig. 4.   Effect of TRPV1 and TRPV4 Channel Inhibitors on γ-Irradiation-
Induced B16 Melanoma Cell Metastasis to the Lungs

B16 cells were pretreated with BCTC (10 μM) (A) or RN-1734 (1 μM) (B) at 30 
min before irradiation with 1.0 Gy γ-rays and incubated for 48 h. Then, B16 cells in 
5.0 × 105 cells/mL of PBS (200 μL) of were injected into the tail vein of C57BL/6 mice 
(n=5). The mice were sacrificed 14 d after injection and the lungs were harvested. The 
number of lung metastatic colonies was counted. Error bars indicate ± SE. Significant 
difference from non-irradiated cells: * (P < 0.05) or *** (P < 0.01). Significant differ-
ence from irradiated cells: ### (P < 0.001).
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in this study, we investigated the involvement of TRPV1 and 
TRPV4 channels in irradiation-induced lung cancer cell migra-
tion.

TRPV1 inhibitors suppressed the γ-irradiation-induced 
cell migration and actin remodeling, as did TRPV4 channel 
inhibitors. Since the enhancement of cell migration induced 
by γ-irradiation was also suppressed by TRPV1 and TRPV4 
channel knockdown, we conclude that activation of TRPV1 
and TRPV4 channels plays a role in γ-irradiation-induced cell 
migration.

Since TRP channels exhibit high calcium ion permea-
bility,37–39) activation of TRPV1 and TRPV4 channels by 
γ-irradiation may cause Ca2+ influx; this in turn activates the 
MAPK pathway,40–45) which is involved in cancer growth and 
migration. In our results, both TRPV1 channel and TRPV4 
channel are involved in γ-irradiation-induced cell migration. 
The results suggest that the regulation of intracellular calci-
um ions by both TRPV1 and TRPV4 channels are needed to 
enhance the cell motility, because the inhibition of TRPV1 
channel or TRPV4 channel almost completely suppressed the 
increase of cell migration.

However, the mechanism underlying TRPV1 and TRPV4 
channel activation by γ-irradiation is unclear. One possibil-
ity is that reactive oxygen species (ROS) produced by ion-
izing irradiation46) activate the TRP channel and cause Ca2+ 
influx.47–51) In addition, we have recently reported that a 
TRPV1 channel inhibitor suppressed DNA repair after irradi-
ation,32) suggesting that TRPV1 inhibitors might increase the 
radiosensitivity of cancer cells.36) Therefore, administration 
of TRPV channel inhibitors concomitantly with radiotherapy 
might reduce the risk of metastasis, as well as amplifying the 
cytotoxic effect of radiation.

Notably, we found that the number of metastatic lung col-
onies after injection of γ-irradiated B16 cells into the tail vein 
of mice was larger than that after injection of non-irradiated 
B16 cells, and the increase was suppressed by pretreating the 
cells with TRPV1 and TRPV4 channel inhibitors. Overall, our 
results represent the first evidence that activation of TRPV1 
and TRPV4 channels plays an important role in ionizing radia-
tion-induced enhancement of cell motility and metastatic abil-
ity. Further work will be needed to assess whether activation 
of other TRP channels, such as TRPC, TRPM or TRPA, might 
also influence migration or invasion of cancer cells.52–56) Nev-
ertheless, our results suggest that TRPV1 and TRPV4 channels 
are potential targets for intervention to block the acquisition of 
motility by cancer cells during radiotherapy in order to reduce 
the risk of metastasis.
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