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As part of our ongoing study on verification of helium—-alternative carrier gases in the official test method
using gas chromatography—mass spectrometry (GC—-MS) for chemicals in indoor air, we examined the applica-
bility of hydrogen and nitrogen to thermal desorption (TD)-GC-MS. A comparison of the signal-to—noise ratios
of standard solutions of volatile organic compounds (VOC) and Phthalate esters showed that detection sensi-
tivities of hydrogen and nitrogen analyses were sufficient for the official test method. Measurements using these
alternative carrier gases showed good linearity and could quantify less than 1/100t" of Japanese guideline values
for indoor air concentrations. Therefore, hydrogen and nitrogen gases can be applied to the official test method
using TD-GC-MS for VOC and Phthalate esters in indoor air as alternative carrier gases to helium.
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INTRODUCTION

Chemical substances in indoor air are widely analyzed by
GC-MS, with helium being the most frequently used carrier
gas due to its inertness, non—flammability, and high analyti-
cal performance. However, Japan relies entirely on imported
helium, and its procurement has become increasingly difficult
because of recent global supply constraints.' In response,
hydrogen and nitrogen have attracted attention as alterna-
tive carrier gases, as they are domestically available and sta-
bly supplied. Several studies have reported their applicability
in GC-MS analysis.>® In addition, GC-MS systems compat-
ible with hydrogen and nitrogen are now available from vari-
ous manufacturers.

The Ministry of Health, Labour and Welfare (MHLW)
revised the official analytical manual for chemicals in indoor
air, in which both the solvent extraction (SE) method and the
thermal desorption (TD) method have been stipulated.” Previ-
ously, we verified the application of hydrogen and nitrogen as
alternative carrier gases for SE-GC—MS and confirmed their
feasibility.!2 However, TD—GC—MS has not been investigated.

In the present study, we examined the applicability of
hydrogen and nitrogen as helium—alternative carrier gases in
the official test method using TD—-GC-MS for VOC and Phtha-
late esters in indoor air.

MATERIALS AND METHODS

Chemicals Standard solutions were purchased from
Tokyo Chemical Industry Co. (Tokyo, Japan), Fujifilm Wako
Pure Chemicals Co. (Osaka, Japan), and Kanto Chemical Co.
(Tokyo, Japan). Toluene—d, (Fujifilm Wako Pure Chemicals
Co., Osaka, Japan) for VOC, di-n-butyl phthalate-d, (DnBP-
d,) and di-2-ethylhexyl phthalate-d, (DEHP-d,) for phthalate
esters were used as internal standard substances. Methanol
5,000 for pesticide residue and poly chlorinated biphenyl anal-
ysis was purchased from Fujifilm Wako Pure Chemicals Co.
(Osaka, Japan) and Kanto Chemical Co. (Tokyo, Japan).

Instruments A TD unit (TD100—xr, Markes Internation-
al Ltd., Llantrisant, UK) was coupled to a GC-MS (5977B
GC-MSD, Agilent Technologies, Inc., CA, USA) equipped
with an Extractor ion source and an integrated leak check sys-
tem. Hydrogen (purity: 99.99996 vol%) was generated using
a hydrogen generator (The NM Plus 160 Hydrogen Genera-
tor, Airtech Co., Kanagawa, Japan). Helium (purity: >99.999
vol%) and nitrogen (purity: >99.9995 vol%) were supplied
through a centralized gas delivery system.

Analytical Methods The analytical conditions for GC
were determined in accordance with the “Manual for Meas-
uring Indoor Air Chemical Substances” set by MHLW!9. The
helium condition followed the official manual (total run time:
53 min), whereas the hydrogen condition adopted a fast-anal-
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ysis condition (25 min). The nitrogen condition was trans-
lated from the hydrogen parameters using the EZGC Meth-
od Translator and Flow Calculator (Restek Corporation, PA,
USA), where the translation was based on equivalent line-
ar velocity and retention behavior to maintain comparable
chromatographic performance. However, because the Height-
Equivalent-to-a-Theoretical-Plate markedly increased under
identical linear velocity, the carrier gas flow rate for nitrogen
was adjusted to 0.5 mL /min, resulting in a total run time of
53 min.

The targeted chemicals were toluene, xylene, styrene, eth-
ylbenzene, 1,4-dichlorobenzene, and tetradecane as VOC,
and di-n—butyl phthalate (DnBP) and di-2-ethylhexyl phtha-
late (DEHP) for phthalate esters. These quantifier and qualifi-
er ions are shown in Table 1. These chemicals were measured
using Selected Ton Monitoring (SIM) modes. The concentra-
tion ranges of the calibration curves were 0.1-100 ng for VOC
and 0.1-5 ng for phthalate esters. m-, p-xylenes, parts of the
three isomers of xylene, were quantified as overlapping peaks.
The chromatograms were processed with PRISM 10 (Graph-
Pad Software, CA, USA). The limits of quantification (LOQ)
were calculated as 10—fold the standard deviation of six anal-
yses of the lowest concentration samples (0.1 ng), respective-
ly, and were further divided by the expected sampling volume
according to the official test method specified by MHLW.1®
The detailed measurement conditions are shown in Tables 2-3.

Table 1. Target and Qualifier lons
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RESULTS AND DISCUSSION

The SIM chromatograms of the standard solutions for the
targeted chemicals demonstrated well-separated peaks, suit-
able for qualitative and quantitative analysis with all test-
ed carrier gases (Fig. 1). The signal-to-noise (S/N) ratios of
the measurements with 100 ng of the targeted chemicals are
shown in Table 4. The S/N ratio was generally highest with
helium. For most compounds, hydrogen provided compara-
ble or even superior S/N ratios, although a moderate decrease
(up to ~45%) was observed for some VOC such as toluene and
xylenes. Nitrogen yielded the lowest S/N ratios, with a reduc-
tion of 15%—77% compared with helium. While helium gener-
ally provided the highest S/N ratios, some compounds exhib-
ited irregular behavior when hydrogen or nitrogen was used
as the carrier gas. For instance, DnBP and tetradecane showed
markedly higher S/N ratios with hydrogen than with helium,
whereas DEHP exhibited slightly higher sensitivity with nitro-
gen. These variations can be attributed to compound-specific
factors such as volatility, adsorption/desorption characteristics,
or ionization efficiency under varying carrier gas properties
and vacuum conditions.

The coefficients of determination (R2) of the calibration
curves are shown in Table 5. Most of the chemicals showed
good linearities, with more than R2 of 0.9990 in the concentra-
tion range of 0.1-100 ng for VOC and 0.1-5 ng for phthalate
esters, except the R2 of DnBP was below 0.999.

A comparison of the LOQ and guideline values for indoor
air concentrations is shown in Table 6. Measurements using
all carrier gases can quantify less than 1/100™ of the guideline
values for the indoor air concentrations of all tested chemicals.
Moreover, since the LOQ values for TD-GC-MS were gener-
ally lower than those for SE-GC-MS, confirming the higher

Chemicals Quantifier Ion Qualifier lon I )
Toluene o1 65.92 sensitivity of the thermal desorption method.
Ethylbenzene 91 51, 106
Xylene 91 105, 106
Styrene 104 78,103
1,4-Dichlorobenzene 146 75, 111 Table 3. Measurement Conditions of TD
Tetradecane 57 43,71 Carrier gases He H, N,
DnBP 149 223 Tube desorption 280 °C, 10 min, 50 mL/min
DEHP 149 167 Primary tube desorption splitless
Toluene-ds 98 70, 100 Cold trap —10°C, 50 mL/min, 1 min
DnBP-d, 153 227 Trap desorption 300 °C, 5 min
DEHP-d, 153 171 Trap desorption split flow 29 mL/min 29 mL/min splitless
DnBP: di-n-Butyl phthalate
DEHP: di-2-Ehylhexyl phthalate
Table 2. Measurement Conditions of GC-MS for VOC and Phthalate Esters
Carrier gases He H, N,
Column DB-1ms Ultra Inert (0.25 mm i.d. x 60 m, 0.25 pm)
Time 53 min 25 min 53 min
40°C (0 min) — (5°C/min) — 40°C (5 min)—(10°C/min)— 40°C (0 min)—(5°C/min)—
Temperature program 250°C (3 min) — (20°C/min) — 130°C (0 min)—(25°C/min)— 250°C (5 min)—(20°C/min)—
300°C (3 min) 280°C (5 min) 300°C (3 min)
Inlet temperature 250°C
Source temperature 280°C
Quad temperature 150°C
Linear velocity (cm/sec) 20.3 25.5 12.7
flow (mL/min) 1 1 0.5
Inlet pressure (kPa) 136.2 753 759
Acquisition type SIM/Scan
Range (m/z) 35-450
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Fig. 1. SIM Chromatograms of the Target Chemicals for Each Carrier Gas

Table 4. S/N Ratios of the Targeted Chemicals

Table 5. Coefficients of Determination for the Targeted Chemicals

Chemicals S/N ratio® Chemicals S
He H, N, He H, N,

Toluene 4,260 2,345 1,200 Toluene 0.9997 0.9997 0.9996
Ethylbenzene 4,084 2,583 1,549 Ethylbenzene 0.9994 0.9994 0.9995
m, p—Xylene 6,298 3,931 2,606 m, p—Xylene 0.9993 0.9995 0.9991
Styrene 2,396 2,910 1,478 o—Xylene 0.9993 0.9997 0.9990
o—Xylene 2,547 1,667 1,276 Styrene 0.9996 0.9994 0.9990
1,4-Dichlorobenzene 2,457 4,156 1,947 1,4-Dichlorobenzene 0.9993 0.9993 0.9993
Tetradecane 1,497 3,978 338 Tetradecane 0.9997 0.9998 0.9993
DnBP 800 4,620 673 DnBP* 0.9998 0.9996 0.9933
DEHP 441 550 502 DEHP* 0.9997 0.9996 0.9993
*100 ng 0.1-100 ng

#0.1-5 ng
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Table 6. Comparison of LOQ and the Guideline Values for Indoor Air Concentration
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\ LOQ " (ug/m?) Guideline values

Chemicals SE "8 TD x107?

He H, N, He H, N, (ng/m’)
Toluene 0.21 0.11 3.40 0.11 0.08 0.33 2.6
Ethylbenzene 0.65 0.49 2.30 0.03 0.03 0.06 3.7
Xylene 2.40 0.90 7.20 0.06 0.03 0.10 2
Styrene 1.80 0.47 1.20 0.05 0.01 0.05 2.2
1,4-Dichlorobenzene 2.30 0.56 1.50 0.02 0.01 0.04 24
Tetradecane 0.96 0.66 5.90 0.02 0.02 0.03 33
DnBP 0.0047 0.039 0.059 0.01 0.06 0.02 0.17
DEHP 0.0080 0.010 0.059 0.02 0.02 0.01 1
#0.1 ng injection at six times repeatedly
“! Divided by specified collection volume (VOC; 144 L, Phthalate esters; 4,320 L)
*? Divided by specified collection volume (VOC; 20 L, Phthalate esters; 144 L)
$ Oshima N et al., BPB reports, 5(4), 2022
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Conclusion This study revealed that hydrogen and nitro-
gen gases can be applied to the official test method using TD—
GC-MS for VOC and Phthalate esters in indoor air as alterna-
tive carrier gases to helium.
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