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INTRODUCTION

Recent progress in nanotechnology in diverse fields such as 
the materials, quantum and life sciences has brought techno-
logical innovations to the environmental, energy, information 
and electronics fields.1–3) Nanomaterials with a particle size of 
100 nm or less are widely used in, for example, medical prod-
ucts, cosmetics, and electronic devices.4–6) The global demand 
for nanomaterials is continually increasing due to the devel-
opment of new materials and technological innovation. Nano-
materials exhibit novel properties not seen in micromaterials, 
such as responses to exogenous stimuli, including heat, light 
and voltage.7,8) However, nanoparticles are artificial materi-
als that have unknown effects on living organisms. Nano-sized 
materials may have unique physico-chemical properties due to 
their larger surface area and smaller size, chemical composi-
tion, surface structure, solubility and shape than micro-sized 
materials. Due to their increased surface area, nanomateri-
als have increased interactions with living tissues, cells, pro-
teins, and nucleic acids, potentially leading to toxic effects 
in humans.9–11) Human exposure to nanomaterials common-
ly accompanies exposure to other potentially toxic substances 
such as foods, food additives, cosmetics and pharmaceuticals.

Cerium(IV) oxide is mainly used as industrial abrasives and 
catalysts, and in fuel cells and sunscreen creams.12) Cerium(IV) 
oxide is a white solid with high melting and boiling points 
and a stable structure. Lung damage due to long-term expo-
sure to cerium(IV) has been reported, but acute toxicity in ani-
mal experiments has not been reported.13,14) Cerium(IV) oxide 
is a highly safe chemical with no reports of reproductive tox-
icity or carcinogenicity.14) Cerium oxide nanoparticles (nCeO) 
are being successfully developed as fuel cell materials and as 
regenerative medicine products with strong antioxidant capac-
ity.15) In particular, cerium oxide nanoparticles have antioxi-
dant ability to remove reactive oxygen species (ROS) in vivo, 
and cerium oxide nanoparticles have been developed as anti-

inflammatory biomaterials. However, there are no reports on 
the safety of these nanoparticles in living organisms.

The field of nanotoxicology has recently expanded as 
researchers investigate the safety, pharmacology, and pharma-
cokinetics of nanoparticles. To date, we have focused on the 
interactions between nanoparticles and chemical substances. 
Silica nanoparticles have been shown to be cytotoxic, hepato-
toxic, and cause placental damage,16,17) and induce liver inju-
ry through interactions with drugs.18) Carbon nanotubes have 
been reported to induce pulmonary mesothelioma.19) Pharma-
cological effects resulting from drug interactions with ceri-
um oxide nanoparticles are largely unknown. In this study, 
we investigated the toxicity of cerium oxide nanoparticles in 
mice, and the interactions between these nanoparticles and 
those that have interacted with nanoparticles in previous stud-
ies,18) such as paraquat (a globally used pesticide), cisplatin (a 
widely used antitumor agent), or acetaminophen (an anti-inflam-
matory drug), could synergistically exert toxic effects.20,21)

MATERIALS AND METHODS

Materials   Cerium(IV) oxide nanoparticles (nCeO) with a 
diameter of 25 nm were obtained from SIGMA-ALDRICH Co. 
(St. Louis, MO, USA). The size distribution of the particles  
was analyzed using a Zetasizer (Sysmex Co., Hyogo, Japan); 
the mean diameter was 24.3 ± 8.7 nm. The particles were 
spherical and nonporous, and stored as 100 mg/mL aque-
ous suspensions. The suspensions were thoroughly dispersed 
using sonication before use and were diluted with water. An 
equal volume of suspension was injected for each treatment. 
Paraquat (PQ), cisplatin (CDDP) and acetaminophen (APAP) 
(FUJIFILM Wako Co., Osaka, Japan) were dissolved in saline 
and stored at −20ºC before use. All reagents used were of 
research grade.

Animals   Eight-week-old BALB/c male mice were pur-
chased from Funabashi Farm Co., Ltd. (Chiba, Japan). The 
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mice were maintained in a controlled environment (tempera-
ture: 23 ± 1.5ºC; light: 12-h light/dark cycle) with free access to 
standard rodent chow and water. The mice were given 1 week  
to adapt before commencing the experiments. The experimen-
tal protocols conformed to the ethical guidelines of the Gradu-
ate School of Pharmaceutical Sciences, Teikyo Heisei Univer-
sity, Japan.

Drug Interactions of nCeO   The nCeO administered 
intravenously at a dose of 0.3 mg/kg body weight; simulta-
neously, paraquat (500 mg/kg) or cisplatin (80 µmol/kg) or 
acetaminophen (400 mg/kg) was administered intraperitoneal-
ly. Blood was recovered 24 h after the co-administration. The 
doses of cisplatin, paraquat and acetaminophen were previous-
ly determined experimentally and did not induce toxicity.

Biochemical Analysis   Serum alanine aminotransferase 
(ALT) and serum aspartate aminotransferase (AST) were meas-
ured using commercially available kits (FUJIFILM Wako Co.) 
according to the manufacturer’s protocols. Briefly, collect-
ed serum (10 µL) was combined with 1 mL of color A reagent 
(containing urease) and incubated at 37ºC for 15 min. Following  
the addition of 1 mL of color B reagent, the sample was incu-
bated at 37ºC for 10 min. Absorbance was measured at a wave-
length of 570 nm. Blood urea nitrogen (BUN) was measured 
using commercially available kits (ARBOR ASSAYS, Inc., 
Ann Arbor, MI, USA) according to the manufacturer’s proto-
cols. Absorbance was measured at a wavelength of 450 nm.

Statistical Analysis   Statistical analyses were performed with 
Statcel 3 add-in forms for Microsoft Excel (EMS Publication  
Co., Ltd., Saitama, Japan). All data are presented as means 
± SEMs. Significant differences between control groups and 
experimental groups were determined using the Dunnett test. P 
values less than 0.05 were considered significant.

RESULTS AND DISCUSSION

First, we examined the acute toxicity of nCeO at a dose 
of 0.3 mg/kg and found that these nanoparticles alone do not 
cause acute toxicity (Fig. 1A). Next, we investigated wheth-
er there is an interaction between several chemicals and nCeO. 
To avoid interactions between the chemicals and nCeO prior to 
administration and absorption, the chemicals were injected into 
mice intraperitoneally and nCeO were injected intravenously.

PQ induces liver and renal damage after intraperitoneal 
administration.20) PQ (50 mg/kg) was administered to mice at 
doses that did not induce hepatic and renal damage. Co-treat-
ment with nCeO caused toxicity. Co-administration of nCeO 
and PQ increased ALT, AST and BUN levels (Fig. 1A, B).

Next, we investigated the interaction between CDDP and 
nCeO. Administration of CDDP causes side effects such as renal 
and hepatic failure. Co-administration of CDDP (80 μmol/kg)  
and nCeO synergistically increased serum ALT levels from 8.4 
to 187.8 K.U. and serum AST levels from 59.1 to 617.4 K.U. 
(Fig. 2A). Serum BUN levels increased synergistically from 
20.4 to 89.0 mg/dL (Fig. 2B). We also investigated the inter-
action between APAP and nCeO. Co-administration of APAP 
(400 mg/kg) and nCeO synergistically increased serum ALT 
levels from 5.8 to 331 KU (Fig. 3).

In this study, we investigated the toxicity induced by chem-
icals combined with nCeO and found that PQ, CDDP and 
APAP produced synergistic toxic effects when combined with 
nCeO. The reason why the AST value, which is an index of 
liver injury, was large in the results was due to the procedure 

when blood was collected from the mouse. It is thought that 
AST leaked into the blood from the myocardium when blood 
was collected from the heart to ensure the volume of blood. 
Liver injury induced by PQ and CDDP is caused by oxida-
tive stress.22,23) APAP-induced liver injury results from meta-
bolic toxicity due to cytochrome P450.24) The administration 
of nCeO to rats results in their accumulation in the liver and 
spleen, then they are captured by phagocytic cells in the liver.25)  
Li et al. reported that nCeO are toxic to liver cells and increase 
ROS levels.26) Our results show no hepatic toxicity result-
ing from nCeO accumulating in the liver, although nCeO do 
induce synergistic toxicity with chemicals known to cause oxi-
dative stress. In addition, paraquat and cisplatin have been 
reported to be nephrotoxic, inducing acute kidney injury in a 
dose-dependent manner.20,21) This suggests that the increase in 
BUN values in Fig. 1 (B) and 2 (B) was due to the increased 
nephrotoxicity of paraquat and cisplatin due to nCeO. Further 
biochemical and other analyses, such as proteome and genome 
assays, will be performed in our laboratory to determine the 
mechanism of these synergistic effects.

This report is the first to indicate toxicity due to synergis-
tic effects between nCeO and chemical agents. Clearly, further 
evaluation of interactions between nano-sized materials and 
pharmaceutical agents is required prior to the pharmaceutical 
application of nanotechnology.

Fig. 1.   Effect of nCeO on PQ-Induced Toxicity
Mice were injected intraperitoneally with PQ at 500 mg/kg together with intra-

venous injection of vehicle or nCeO (0.3 mg/kg). (A): At 24 h post-injection, serum 
levels of liver enzymes alanine transferase (ALT; open columns) and aspartate trans-
ferase (AST; solid columns) were measured. (B): Plasma levels of blood urea nitrogen 
(BUN). Data are representative of three independent experiments, and are presented as 
mean ± standard error of the mean (SEM; n = 4). ** Significant difference (p < 0.01) 
between the vehicle- and the PQ-treated group
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Fig. 2.   Effect of nCeO on CDDP-Induced Toxicity
Mice were injected intraperitoneally with CDDP at 80 μmol/kg together with intra-

venous injection of vehicle or nCeO (0.3 mg/kg). (A): At 24 h post-injection, serum 
levels of liver enzymes alanine transferase (ALT; open columns) and aspartate trans-
ferase (AST; solid columns) were measured. (B): Plasma levels of blood urea nitrogen 
(BUN). Data are representative of three independent experiments, and are presented as 
mean ± standard error of the mean (SEM; n = 4). ** Significant difference (p < 0.01) 
between the vehicle- and CDDP-treated group.

Fig. 3.   Effect of nCeO on APAP-Induced Toxicity
Mice were injected intraperitoneally with APAP at 400 mg/kg together with intra-

venous injection of vehicle or nCeO (0.3 mg/kg). At 24 h post-injection, serum levels 
of liver enzymes alanine transferase (ALT; open columns) and aspartate transferase 
(AST; solid columns) were measured. Data are representative of three independent 
experiments, and are presented as mean ± standard error of the mean (SEM; n = 4).  
** Significant difference (p < 0.01) between the vehicle- and APAP-treated group.
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