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INTRODUCTION

Lipid metabolism plays a vital role in tumor progression.1,2) 
Lipoprotein metabolism is significantly associated with cancer 
growth, metastasis, and invasion.3,4) Therefore, the investiga-
tion of lipid metabolism in tumor cells is essential for discov-
ering new therapeutic strategies.

Lipoprotein lipase (LPL; EC 3.1.1.34) is an important 
enzyme responsible for lipoprotein metabolism and is synthe-
sized in extrahepatic tissues or adheres to cell surfaces and the 
luminal endothelium of blood vessels.5) It is also recognized 
that LPL hydrolyzes triacylglycerol components in chylomi-
crons and very-low-density lipoproteins in plasma. Moreover, 
LPL expression has been confirmed in various kinds of cancer 
cells.6–8) Sakayama et al. indicated high levels of LPL activi-
ty in some human sarcomas and carcinomas that were prolif-
erating actively.9) And Trost et al. also reported that high LPL 
activity in non-small cell lung cancer tissue predicted shorter 
patient survival.10)

Progesterone (P4) is involved in the development of the 
mammary gland and uterus and pregnancy continuation. The 
expression of the P4 receptor (PR) is a well-known risk factor 
for breast cancer.11) High doses of medroxyprogesterone ace-
tate (MPA), which is used as a P4 medicament, are applied to 
PR-positive breast cancer patients.12) Furthermore, it is con-
sidered to have an effect of suppressing cancer cachexias.13) 

On the other hand, an increase in the growth of breast cancer 
caused by P4 has been reported.14) As described above, sev-
eral studies have been reported the relationship between the 
growth of breast cancer and P4, however, effects of P4 on lipo-
protein metabolism, especially LPL, in breast cancer cells are 
not fully elucidated in detail.

In this study, we show that MPA causes the stimulato-
ry secretion of LPL in mouse mammary tumor FM3A cells. 
FM3A cells have been often used in the investigation for 
breast cancer, to possess the high proliferative potential and 
hormone receptor positivity.15,16) Moreover, the action of MPA 
is partly associated with a pathway of the mechanistic target of 
rapamycin (mTOR).

MATERIALS AND METHODS

Materials   FM3A cells were obtained from RIKEN Bio 
Resource Center (Tsukuba, Japan). MPA was obtained from 
FUJIFILM Wako Pure Chemical Corporation (Osaka, Japan). 
Triolein [carboxyl-14C]- (3.7 MBq/mL) and ATP [γ-32P]-  
(370 MBq/mL) were purchased from Perkin Elmer (Waltham, 
MA, USA). cAMP EIA kit was obtained from Cayman Chemical  
(Ann Arbor, MI, USA). Small interfering RNA (siRNA) Ric-
tor (SASI_Mm01_00137729) and siRNA control (MISSION 
siRNA Universal Negative Control #1) were purchased from  
Sigma (Louis, MO, USA). All other chemicals used were of 
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analytical grade.
Cell Preparation   FM3A cells were cultured in the medi-

um containing RPMI1640 supplemented with 10% fetal 
bovine serum at 37°C in a 5% CO2 atmosphere. After remov-
ing the medium, the cells were incubated in Hanks’ balanced 
salt solution (+) with MPA in the presence of various inhibi-
tors. After incubation, the supernatant and the cells were sepa-
rate by centrifugation, and served as the preparation for study-
ing the activities of LPL and mitogen-activated protein kinase 
(MAPK), for analyses of western blotting, and for measure-
ments of cAMP contents as described.17) Cell growth was 
counted with an Olympus BX50 microscope (Tokyo, Japan).

LPL Assay   LPL activity was determined by a radioi-
sotopic method using triolein [carboxyl-14C]-labeled sub-
strate.17–19) LPL activity was expressed as nmol of free fatty 
acids produced/h/106 cells.

Measurement of cAMP Contents   According to the man-
ufacturer's protocol, cAMP contents in cells were lysed in a 
0.1 M HCl solution for 20 min were determined using enzyme 
immunoassay (EIA) using a cAMP EIA kit. cAMP content was 
expressed pmol of cAMP/protein mg.

MAPK Assay   Measurement of MAPK activity was per-
formed by a radioisotopic method using ATP [γ-32P]- labeled 
substrate.17,20) The MAPK activity was expressed pmol of [32P] 
phosphorylated myelin/min/106 cells.

Rictor Knockdown   FM3A cells, which were seeded at 
a density of 8 × 104 cells/mL in 150 cm2 suspension cell cul-
ture flasks from Sumitomo Bakelite (Tokyo, Japan), were 
transfected to 10nM siRNA Rictor or siRNA control using 
Lipofectamine RNAiMAX transfection reagent (Invitrogen,  
Waltham, MA, USA) and Opti-MEM (Gibco, Waltham, 
MA, USA) following the manufacturer's instructions. The  
knockdown efficiency of transfection was confirmed using 
western blotting.

Western Blotting   Antibodies of LPL and Rictor (53A2) 
were purchased from LabFrontier (Seodaemun-gu, Seoul, 
Korea) and Cell Signaling Technology (Beverly, MA, USA), 
respectively. Western blotting was performed as described  
previously.17)

Statistical Analysis   Results are shown as mean ± standard 
error (SE) of four to six observations for two separate experi-
ments. The data were analyzed by Student's t-test or one-way 
ANOVA followed by Tukey multiple comparisons test.

RESULTS

Effects of MPA on FM3A Cells   We investigated the 
effects of MPA on the growth of FM3A cells. The cell growth 
increased up to 10 nM (Fig. 1a). Figure 1b shows the secret-
ed LPL activity from FM3A cells incubated in the presence 
of 1 nM MPA over a 90-min period. However, the amount of 
LPL protein secreted into the medium was not found to change 
with time (Fig. 1c). Then, the cells were incubated with MPA 
(0–50 nM) for 60 min; the secreted LPL activity significant-
ly increased as the dosage increased up to 10 nM (P < 0.05)  
(Fig. 1d). The amount of LPL protein secreted into the medi-
um was not influenced by dosage (Fig. 1e).

Effect of MPA on cAMP Content in FM3A Cells   To 
examine whether the stimulation of the LPL secretion by 
MPA was associated with the activation of Gs protein-cou-
pled receptor and protein kinase A (PKA), the cells were incu-
bated with MPA in the presence of H-89, a PKA inhibitor.21) 

The MPA-stimulated secretion of LPL was resuced by H-89  
(Fig. 2a). Furthermore, the cells were incubated with 1 nM 
MPA over a 5-min period. A time-dependent increase in cAMP 
content in the tumor cells was observed up to 1 min (Fig. 2b).

Effect of MPA on MAPK and MAPK Inhibitors   There 
was a marked increase in intracellular MAPK activity after 
treatment with MPA up to 60 min (P < 0.01) (Fig. 3a). The 
tumor cells were incubated with MPA in the presence of var-
ious inhibitors of the MAPK signaling pathway, such as 
U0126,22) FR180204,23) SB202190,24) SP600125.25) The stimu-
lation of LPL secretion by MPA was suppressed by U012622) 
(a MAPK kinase 1/2 inhibitor), FR18020423) (an extracellular 
signal-regulated kinase (ERK) 1/2 inhibitor), and SB20219024) 
(a p38 MAPK inhibitor) (Fig. 3b–d), but not by SP60012525) 
(a JNK inhibitor) (Fig. 3e). The concentration of the MAPK 
inhibitors used is based on the references cited.22–25)

Effects of Rictor Knockdown on MPA-Stimulated  
Secretion of LPL   The MPA-stimulated secretion of LPL 
was markedly reduced by an inhibitor of mTORC1 and 2, 
KU0063794 (Fig. 4a) (P < 0.01, 100 nM) but was not suppressed 
by the mTORC1 (mTORC1 inhibitor, rapamycin (Fig. 4b)).  
To further investigate whether the stimulation of LPL secre-
tion by MPA is essential via mTORC2, we knocked down 
Rictor expression by siRNA in the tumor cells that is specif-
ic components of mTORC2 (Fig. 4c).26) Subsequently, when 
the knockdown cells were incubated with MPA, the stimula-
tion of LPL secretion by MPA was strongly inhibited (Fig. 4d)  
(P < 0.01, 1 nM MPA).

DISCUSSION

In our studies, MPA enhanced the proliferation of mouse 
mammary tumor FM3A cells at a concentration of approxi-
mately 10 nM. According to the studies,14,27) MPA was prov-
en to enhance the mammary tumor growth by P4. Moreover, a 
high dose of MPA is used to treat endometrial and breast can-
cers.12,13) These findings suggest that the growth of the tumor 
cells is changed by any concentration of MPA. The results 
showed that MPA-stimulated active LPL in mouse mamma-
ry tumor FM3A cells up to 10 nM (Fig. 1d). However, the 
amount of LPL protein secreted into the medium was not 
markedly increased (Fig. 1e). LPL is synthesized in the rough 
endoplasmic reticulum (rER), modified in the rER and Golgi 
body, and then secreted as an active form.5) Therefore, these 
results suggest that the increase in the secreted active LPL due 
to MPA is not caused by the increase in the amount of LPL 
protein but by the post-translational modification promotion.5)

The P4 receptor is localized in various cell organelles such 
as the nucleus, cytoplasm, and cell membrane.28,29) Among 
them, the membrane progesterone receptor (mPR) is identi-
fied, but mPR which is either G protein-coupled receptor, is 
still under unknown.30,31) In this study, MPA increased cAMP 
contents within 1 min (Fig. 2b), and this suggests that the mPR 
might be a Gs protein-coupled receptor. Figure 2a show that 
H-89 (a PKA inhibitor) suppresses the secretion of active LPL 
by MPA. Therefore, it is considered that the secretory process 
of LPL by MPA is involved in an activation of PKA with an 
increase in cAMP contents.

According to the reports, P4 activates the MAPK signal-
ing.27,32) In this report, MPA also stimulated MAPK activity in 
the tumor cells (Fig. 3a). The secreted LPL activity by MPA 
was reduced by the inhibitors on the MAPK pathway, except 
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Fig. 1.   Effects of Medroxyprogesterone Acetate (MPA) on Mouse Mammary Tumor FM3A Cells 
(a) FM3A cell growth after treatment with various MPA concentrations for 72 h. (b, c) Secreted lipoprotein lipase (LPL) and protein activity in FM3A cells incubated with (●) 

or without (○) 1 nM MPA for the indicated time. (d, e) Changes in the secretion of LPL from the cells incubated for 60 min with various concentrations of MPA were examined.  
(b, d) The activity of LPL and (c, e) LPL protein secreted into the medium. Data were shown as mean ± SE. Significantly different from no MPA (n = 6) by Student's t-test (b, c, e) 
or one-way ANOVA followed by Tukey multiple comparisons test (a, d). *P < 0.05, **P < 0.01

Fig. 2.   Effect of MPA on cAMP Contents in FM3A Cells 
(a) Secreted LPL activity in FM3A cells incubated for 60 min with or without 1 nM MPA in the presence of H-89. Significantly different from no H-89 by one-way ANOVA fol-

lowed by Tukey multiple comparisons test. (n = 4) *P < 0.05 (b) cAMP content in FM3A cells incubated with (●) or without (○) 1 nM MPA over 300 s. Data were shown as mean 
± SE. Significantly different from no MPA by Student's t-test. (n = 6) *P < 0.05, **P < 0.01
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SP600125 (an inhibitor of JNK in the MAPK subfamily)  
(Fig. 3b-e). From our results, the stimulatory secretion of LPL 
by MPA was mediated through ERK 1/2 and the p38 MAPK 
subfamily pathways. These MAPK pathways have been 
shown to activate the mTOR pathway.33,34) The mTORC1 and 
mTORC2 inhibitor, KU0063794, decreased the stimulation 
of LPL secretion by MPA (Fig. 4a). However, the mTORC1 
inhibitor, rapamycin, did not suppress the stimulatory secre-
tion of LPL (Fig. 4b). Finally, we determined that the siRNA 
Rictor knockdown suppressed MPA stimulated secretion of 
LPL in the mTOR (Fig. 4d).

In conclusion, our study suggests that MPA increased in the 
secretion of the active LPL from FM3A cells due to the stimula-
tion of mTORC2 with an activation of the PKA–MAPK signal-
ing pathway through the mPR. Moreover, these results suggest 
that the low concentration of P4 may increase the progression  
of breast cancer by promoting lipoprotein metabolism.
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