
*To whom correspondence should be addressed.   e-mail: noguchi@m.tohoku.ac.jp; matsushi@m.tohoku.ac.jp

INTRODUCTION

Vancomycin (VCM) is one of the glycopeptide antibiot-
ics, originally isolated from Streptomyces orientalis.1) VCM 
inhibits cell wall synthesis of gram-positive bacteria, includ-
ing methicillin-resistant Staphylococcus aureus (MRSA).2-4) 
On the other hand, VCM has been reported to cause adverse 
side effects, including nephropathy, deafness, hypotension, 
pancytopenia, skin rash, and red man syndrome.5) In particu-
lar, nephropathy occurs in 5-25% of the patients treated with 
VCM, and the auditory toxicity is dose-dependent and can 
be exacerbated by the combination treatment with amino-
glycosides.6-8) However, the underlying mechanisms of these 
adverse side effects remain to be elucidated.

The nuclear factor-κB (NF-κB) and the mitogen-activat-
ed protein kinase (MAPK) signaling pathways play pivot-
al roles in mediating inflammatory responses.9,10) A wide vari-
ety of pro-inflammatory mediators, including tumor necrosis 
factor (TNF)-α and interleukin-1β (IL-1β), and toll-like recep-
tor (TLR) ligands, such as lipopolysaccharide (LPS), strong-
ly activate these pathways, and then induce the inflammatory 
responses.11-13) In addition, interferon (IFN) signaling pathways 
also mediate the inflammatory responses by promoting expres-
sion of IFN-responsive genes.14,15)

The inflammasomes are cytosolic multiprotein complexes 
consisting of the sensor proteins, such as NOD-like receptor 
(NLR) or absent in melanoma 2 (AIM2)-like receptor (ALR) 
family proteins, the adaptor protein ASC, and the downstream 
effector caspase-1.16) The inflammasome formation can be trig-
gered by pathogen-associated molecular patterns (PAMPs) 

and damage-associated molecular patterns (DAMPs), leading 
to the auto-cleavage and subsequent activation of caspase-1. 
Finally, activated caspase-1 induces the processing and secre-
tion of pro-inflammatory cytokines, IL-1β and IL-18.17) On 
the other hand, excessive activation of the inflammasomes 
has been associated with a wide variety of diseases, including 
chronic inflammation, autoimmune diseases, metabolic diseas-
es, and neurodegenerative diseases.18-20) Thus, the inflammas-
omes are potential drug targets for these diseases.

In this study, we found that VCM upregulates the gene 
expression of NLRs and AIM2 in macrophages. Interestingly, 
the VCM-induced upregulation of these genes is likely medi-
ated by alternative pathways rather than major inflammatory 
signaling pathways, such as NF-κB, MAPK, and IFN signal-
ing pathways.

MATERIALS AND METHODS

Cell Culture and Reagents   HEK293 TLR4/MD-2/CD14-
stable cells purchased from InvivoGen were cultured in 
DMEM containing 10% heat-inactivated fetal bovine serum 
and 1% penicillin-streptomycin solution. RAW264.7 and THP-
1 cells were cultured in RPMI 1640 containing 10% heat-inac-
tivated fetal bovine serum and 1% penicillin-streptomycin 
solution. All cells were cultured at 37 °C in 5% CO2 atmos-
phere. For experiments, THP-1 cells differentiated for 24 h 
with 100 nM PMA on the day before stimulation. VCM was 
purchased from Wako. LPS was purchased from InvivoGen.

Immunoblot   Cells were lysed with the 1% Triton X-100 
buffer [20 mM Tris-HCl (pH 7.4), 150 mM NaCl, 1% Tri-
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ton-X100, 10% Glycerol, and 1% protease inhibitor cocktails 
(Nacalai)]. After centrifugation, the cell extracts were resolved 
by SDS-PAGE and analyzed as described previously.21) The 
antibodies used were against phospho-p65, phospho-IκBα, 
phospho-p38, phospho-JNK, phospho-ERK (Cell Signaling 
Technology), and β-actin (Wako). The blots were developed 
with ECL (Merck Millipore).

Luciferase Assay   The reporter assays were performed 
essentially as described.22) Cells were transfected with NF-κB-
luc, IFN regulatory factor 3 (IRF3)-luc or IFNβ-luc using Pol-
yethylenimine "Max" (Cosmo Bio) according to the manufac-
turer’s instructions. After 24 h, cells were treated with VCM 
for 12 h or LPS for 6 h and then assayed their luciferase activ-
ities using Dual-Luciferase Reporter Assay System (Promega) 
according to the manufacturer´s instructions.

Quantitative Real-Time PCR   Total RNA was extracted 
using Sepasol-RNA I Super G (Nacalai Tesque) and reverse 
transcribed using High-Capacity cDNA Reverse Transcrip-
tion Kit (Applied Biosystems) according to the manufac-
turer’s instructions. Template cDNA was amplified by quan-
titative real-time PCR using KAPA SYBR FAST qPCR Kits 
(KAPA Biosystems) according to the manufacturer’s instruc-
tions. Primers used for qRT-PCR were listed on Table 1. Each 
gene expression levels were normalized to that of β-actin or 
GAPDH.

RESULTS AND DISCUSSION

To investigate mechanisms by which VCM promotes 
inflammation, we examined VCM-induced cellular respons-
es, in particular focusing on major pro-inflammatory sign-
aling pathways, such as NF-κB, MAPK, and IFN signaling 
pathways. As shown in Fig. 1A, VCM failed to enhance phos-
phorylation levels of p65 and IκBα that are typical indicators 
of the activation of NF-κB signaling pathways, whereas LPS, 
a representative PAMP derived from Gram-negative bacteria, 
clearly enhanced these pathways. In addition, VCM also failed 

to activate the MAPKs, such as p38 MAPK, c-Jun N-termi-
nal protein kinase (JNK), and extracellular signal-regulated 
kinase (ERK) (Fig. 1B). Moreover, luciferase assays revealed 
that VCM does not upregulate the gene promoter activity of 
not only NF-κB but also IRF3 and IFNβ (Fig. 1C). Consist-
ent with these observations, VCM did not affect gene expres-
sion of IL-1β and TNF-α, whose induction is highly dependent 
on the NF-κB and MAPK signaling pathways, whereas LPS 
clearly upregulated the expression of these genes (Fig. 2). Col-
lectively, these observations suggest that VCM does not affect 
the activation of these signaling pathways.

A previous report has demonstrated that VCM promotes 
IL-1β release in macrophages.23) We thus speculated that VCM 
promotes IL-1β release by stimulating other mechanisms rather 
than the major pro-inflammatory signaling pathways, and then 
examined whether VCM affects the expression levels of NLR 
and ALR family genes that are critical components for IL-1β 
release. The listed genes in Fig. 3, except AIM2, belong to the 
NLR family. Interestingly, VCM significantly increased the 
mRNA levels of NLRP1, NLRC4, and AIM2 in human mono-
cytic THP-1 cells, suggesting that VCM has an ability to pro-
mote IL-1β release through the upregulation of the NLR and 
ALR family genes (Fig. 3). In particular, it has been reported 
that NLRP1, NLRC4, and AIM2 mediate IL-1β release induced 
by a component of bacterial peptidoglycan muramyl dipep-
tide (MDP), bacterial flagellin, and virus DNA, respectively, 
raising the possibility that VCM potentiates pathogen-induced 
IL-1β release.24-27) Moreover, we found that VCM increased the 
mRNA levels of NLRP7 and NLRP12 (Fig. 3). Although the 
functions of NLRP7 and NLRP12 are poorly characterized, pre-
vious studies have demonstrated that both are involved in the 
inflammatory responses.28-30) In particular, both NLRs promote 
IL-1β release by recognizing specific pathogens, suggesting that 
VCM-mediated upregulation of NLRP7 and NLRP12 might 
also potentiate pathogen-induced IL-1β release.31-33) Taken 
together, our results provide evidence that VCM has an ability 
to upregulate various inflammasome components, which proba-

Table 1.   Primers for Quantitative Real-Time PCR

gene Forward Reverse
IL-1β 5’-GTCCTGCGTGTTGAAAGATGATAAG-3’ 5’-TTCTGCTTGAGAGGTGCTGATG-3’
TNF-α 5’-CGAGTGACAAGCCTGTAGCC-3’ 5’ -TTGAAGAGGACCTGGGAGTAGATG-3’
NLRP1 5'-AAGACCAGCTGTTCTCGGAGTT-3' 5'-AGGCATGAGATCTCCTGGTTTC-3'
NLRP2 5'-TGAGGAAACCACTGTGCAACTT-3' 5'-AACTGAACGGAGGGATGGAA-3'
NLRP3 5'-GAAGAAAGATTACCGTAAGAAGTACAGAAA-3' 5'-CGTTTGTTGAGGCTCACACTCT-3'
NLRP4 5'-AACTACCCAGCAGGCAACGT-3' 5'-AATCAATGGGTGAGAGGTGACAA-3'
NLRP5 5'-CTGGACACGGCTGGCTGTGG-3' 5'-TGCCGGTTGCAGGAAAGGGC-3'
NLRP6 5'-GACCCTCAGTCTGGCCTCTGT-3' 5'-TCCGGCTTTGCTCTCTTCAC-3'
NLRP7 5'-CTTCTGTGCGGATTCTTTGTGA-3' 5'-TTTTTAATCTCCACTTTCTGCAGATG-3'
NLRP8 5'-AGGCACCCTCAGTGCAAACT-3' 5'-CCCGTCAAAACACCGATTAAG-3'
NLRP9 5'-CGCATGTGTGTGGAGAATATCTTT-3' 5'-CCCGCCAGTAGACGAGCTT-3'
NLRP10 5'-CAAGGGCTTGAAGGTCATGAA-3' 5'-CGCACATGCTCTCGGTATACTT-3'
NLRP11 5'-CGCACACTCAAGTTGTCCTATGTC-3' 5'-ACGAGCCAAAGCCTTGAGTAAG-3'
NLRP12 5'-CCAGAAACTGTGGCTGGATAGC-3' 5'-GCGTTGTTGGTCAGGTAAAGG-3'
NLRP13 5'-CTCTGAAACCACATCGTGCATT-3' 5'-GCAAGCAGTTGTCAGATTGCAT-3'
NLRP14 5'-TCAGAGGCTCGGGTTGGA-3' 5'-TGCAGATAAGAGCAGAGGAGAGATC-3'
NLRC4 5'-TAGCCGAGCCCTTATTCAAA-3' 5'-ACCTTCTCGCAGCAAATGAT-3'
AIM2 5'-ATGTGAAGCCGTCCAGA-3' 5'-CATCATTTCTGATGGCTGCA-3'
β-actin 5’-GCCAACACAGTGCTGTCTG-3’ 5’-CCTGCTTGCTGATCCACATC-3’
GAPDH 5'-AACAGCCTCAAGATCATCAGC-3' 5'-GGATGATGTTCTGGAGAGCC-3'
The mRNA expression of NLRP4, NLRP5, NLRP8, NLRP9, NLRP10, NLRP13 and NLRP14 was not detected by these primers in PMA-differentiated THP-1 cells.
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bly enhances the pathogen-induced IL-1β release, and may help 
to explain why VCM causes the inflammatory side effects.
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Fig. 1.   Effects of VCM on the Inflammatory Signaling Pathways
(A)(B) TLR4-stable HEK293 cells (A) or RAW264.7 cells (B) were treated with VCM (1 mg/mL) or LPS (100 ng/mL) for the indicated periods. Total cell lysates were then 

analyzed by western blot. (C)(D)(E) TLR4-stable HEK293 cells were transfected with NF-κB-, IRF3- or IFNβ-luciferase reporter vector. After 24 h, cells were treated with VCM  
(1 mg/mL) for 12 h or LPS (100 ng/mL) for 6 h, and then their luciferase activities were analyzed. Graphs are shown as mean ± S.D. (n=3). Statistical significance was determined 
by student’s t-test. **p < 0.01.

Fig. 2.   Effects of VCM on the Gene Expression of IL-1β and TNF-α
RAW264.7 cells were treated with VCM (1 mg/mL) for the indicated periods or 

LPS (100 ng/mL) for 6 h. The mRNA levels of the indicated genes were then analyzed 
by quantitative real-time PCR (normalized with β-actin mRNA levels). Graphs are 
shown as mean ± S.D. (n=3). Statistical significance was determined by student’s t-test.  
**p < 0.01.
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