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INTRODUCTION

The process from inflammation to wound healing is an 
important step in maintaining homeostasis in the body, which 
is strictly regulated by the balance of inflammatory/anti-
inflammatory signals.

NF-κB is a key mediator of inflammatory response, that 
is a family of transcription factors consisting of RelA (p65), 
RelB, c-rel, p50 and p52.1) Pro-inflammatory cytokines such 
as Tumor necrosis factor alpha (TNF-α), interleukin 1 beta 
(IL-1β) and bacterial lipopolysaccharide (LPS) are well known 
as NF-κB activator. Binding of these cytokines to those recep-
tors induces phosphorylation of IκBα, a negative regulator of 
NF-κB, followed by ubiquitination and proteasomal degrada-
tion of IκBα and releasing NF-κB subunits, such as p65/p50, 
which then translocate to the nucleus.2) In nucleus, NF-κB acti-
vates transcription of various pro-inflammatory genes, such as 
cyclooxygenase-2 (COX-2),3,4) inducible nitric oxide synthase 
(iNOS)5-8) and NADPH oxidase-2 (NOX2)9) that are enzymes 
related to reactive oxygen species (ROS) production, result-
ing in induction of inflammation and oxidative stress. Fur-
ther, some studies have shown that ROS, in particular, hydro-

gen peroxide (H2O2), can activate NF-κB signaling in various 
cell types.10-12)

On the other hand, Nrf2 is known as a key transcription 
factor mediating anti-oxidant/anti-inflammatory response con-
tributing cell homoeostasis in response to oxidative stress.13,14) 
Nrf2 is expressed in a wide variety of tissues, but its amount of 
protein is kept low through Kelch-like erythroid cell-derived 
protein with CNC homology-associated protein 1 (Keap1) 
dependent ubiquitination-proteasomal degradation under 
basal condition.15) Oxidative stress causes structural change of 
Keap1 and release Nrf2. Then Nrf2 translocates to the nucleus 
and regulates the expression of its target genes related to drug 
metabolism and disposition, antioxidant defense, such as heme 
oxygenase 1 (HO-1) and NAD(P)H quinone oxidoreductase-1 
(NQO-1).16-18)

The balance of Nrf2 and NF-κB pathways is important for 
the physiological homeostasis of cellular redox status under 
oxidative stress. Severe oxidative stress induces excessive 
activation of NF-κB signaling, resulting in chronic inflamma-
tion and tissue injury via the production of COX-2 and inflam-
matory cytokines. On the other hand, mild oxidative stress 
induces Nrf2 activation and anti-oxidative enzymes that not 
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The controlled and moderate oxidative stress such as ozone induces both inflammatory and anti-inflamma-
tory response. This balance is important for homeostasis of living organisms. Furthermore, it has been shown 
that this conflict response is mainly regulated by two transcriptional factors, nuclear transcriptional factor κB 
(NF-κB) and nuclear factor erythroid 2-related factor 2 (Nrf2). NF-κB is involved in inflammatory responses by 
regulating expression of cyclooxygenase-2 (COX-2) and various inflammatory cytokines while Nrf2 is involved 
in anti-inflammatory responses by controlling expression of numerous antioxidant enzymes such as heme oxy-
genase-1 (HO-1). We here demonstrate the molecular mechanisms of the crosstalk between NF-κB and Nrf2 
activation during the moderate oxidative stress induced by ozone. We first confirmed the activation of NF-κB 
and Nrf2 signaling during the moderate oxidative stress in HeLa cells. Induction of NF-κB-mediated COX-2 
mRNA expression was observed at the early phase after stimulation (30-60 min after ozone treatment). Howev-
er, induction of HO-1 mRNA expression was observed at the late phase of stimulation (6 h after stimulation). To 
reveal the crosstalk between NF-κB and Nrf2, we tested whether reduction of NF-κB expression affects ozone-
induced Nrf2 activation by knocking down of NF-κB in HeLa cells. Importantly, the HO-1 induction by ozone 
was remarkably decreased by a reduction in NF-κB expression. These results suggest that the moderate oxida-
tive stress by ozone initially induces NF-κB activation, and this NF-κB activation is required for HO-1 induction 
at the late phase of the moderate stress.
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only protect cells from oxidation and inflammation but con-
tribute to recover various tissue injury.

Ozone (O3) has been widely known as strong oxidant and is 
toxic for pulmonary system and skin during prolonged expo-
sure.19-26) However, scientific evidence proved that the effects 
of ozone exposure are dose-dependent: high dosages stimulate 
severe oxidative stress resulting in inflammatory response and 
tissue injury, whereas low doses of ozone induce a moderate 
oxidative eustress activating antioxidant pathways.27-37) These 
properties make ozone a useful medical tool, which can be 
used as either a disinfectant or an adjuvant agent in the thera-
py of numerous diseases.32,38-40)

This paradox of ozone effect should be explained by the 
balance of NF-κB and Nrf2 signaling. Actually, many studies 
have been reported about the cross-talk between NF-κB and 
Nrf2, that Nrf2 plays a critical role in counteracting NF-κB 
driven inflammatory response.41-43) However, its molecular 
mechanism is still unclear.

Here, we demonstrated the molecular mechanisms of the 
crosstalk between NF-κB and Nrf2 activation during the mod-
erate oxidative stress induced by ozone.

MATERIALS AND METHODS

Reagents and Cells   N-Acetyl-L-cysteine (NAC) was pur-
chased from Wako (Tokyo, Japan). HeLa cells were cultured 
in DMEM (Sigma-Aldrich, St. Louis, MO, USA) supplement-
ed with 10% FBS (Sigma-Aldrich, St. Louis, MO, USA) at  
37°C in a humidified 5% CO2, 95% air atmosphere.

Knockdown   For knockdown of NF-κB (p65) expres-
sion in HeLa cells, we used the small interfering RNAs (siR-
NAs) targeting human NF-κB, detailed as follows: siNF-
κB#1, 5′-UUACGUUUCUCCUCAAUCCGG-3′; siNF-κB#2, 
5′-CUUGUCGGUGCACAUCAGC-3′. Control siRNA was 
obtained from Qiagen (nonsilencing; catalog 1022076, Venlo, 
The Netherlands). HeLa cells were plated on 24-well plates at 
2 × 104 cells/well and incubated with a siRNA–Lipofectamine 
2000 (Invitrogen, Carlsbad, CA, USA) mixture at 37°C for  
4 h, followed by the addition of fresh medium containing 10% 
FBS. To confirm the knockdown of NF-κB (p65) in HeLa 
cells, an aliquot of total cell lysates was analyzed by immuno-
blotting using anti-p65 (Santa Cruz, CA, USA) or anti-Actin 
antibody (Santa Cruz, CA, USA). Western blotting assays 
were performed as described previously.44)

Culture Condition and Ozone Treatment   Ozone was 
generated from medical-grade oxygen by a streamer discharge 
type ozone generator (Model TK20, Otec. Lab., Tokyo, Japan), 
which allows the gas flow rate and ozone concentration 
(0.0~40.0 µg/mL) to be controlled in real time by photomet-
ric determination. Produced ozone/oxygen mixture was taken 
from the syringe port of the generator with a sterile syringe 
and then injected into cell culture medium with dose of  
30 µg O3 /mL. This ozonated medium was prepared immedi-
ately before use. Cells were cultured in 24-well plates with 
500 µL of DMEM containing 10% FBS. For ozone treatment, 
the culture medium was replaced with ozonated medium pre-
pared as above.

RNA Isolation and Quantitative Real-Time PCR (qPCR)   
Cells were harvested, and total RNAs were prepared using Iso- 
Gen (Nippon Gene, Tokyo, Japan) and used in RT-PCR. RT-PCR  
was performed using an RT-PCR high-Plus-Kit (TOYOBO, 
Tokyo, Japan). Quantitative real-time PCR analyses of COX-2 

and HO-1, as well as the control beta-Actin mRNA transcripts, 
were carried out using the assay-on-demand gene-specific flu-
orescently labeled TaqMan MGB probe in an ABI Prism 7000 
sequence detection system (Applied Biosystems, Foster City, 
CA, USA).44) The significance of differences between group 
means was determined by Student’s t-test.

Measurement of Intracellular ROS   Intracellular ROS 
was detected with ROS assay Kit - Highly Sensitive dichloro‐
dihydro‐fluorescein diacetate (DCFH-DA) (Dojindo, Tokyo, 
Japan), according to manufacture’s standard protocol. The 
fluorescence was measured after 30 min of incubation with  
10 µM DCFH-DA using excitation and emission wavelengths 
of 488 and 515 nm by Zeiss LSM 510 laser scanning micro-
scope with an Apochromat x63/1.4 oil immersion objective 
and x4 zoom.

RESULTS

To confirm activation of NF-κB and Nrf2 signaling induced 
by ozone, we measured time-dependent mRNA expression 
of COX-2 and HO-1 as a major target of each signaling in 
HeLa cells before and after cultured with ozonated medium. 
As a result, COX-2 was induced in early phase (0.5-1 h ozone 
treatment), while HO-1 mRNA expression increased after 6 h  
(Fig. 1A, B). This result indicated that NF-κB signaling was 
activated by ozone treatment, prior to Nrf2. To investigate the 
crosstalk between NF-κB and Nrf2 during ozone treatment, we 
tested the effect of NF-κB (p65) knockdown in HeLa cells by 
using siRNA. We measured HO-1 mRNA expression induced 
by ozone treatment in WT or NF-κB knockdown HeLa cells. 
As a result, we observed HO-1 induction by ozone treatment 
was dramatically decreased by NF-κB knockdown. This result 
suggested that NF-κB activation by ozone at early phase was 
important for HO-1 induction at late phase (Fig. 1C).

It has been well known that activation of NF-κB signal-
ing followed by induction of various inflammatory molecules 
(such as COX-2) causes ROS production and oxidative stress. 
To confirm the ROS production after ozone treatment, we 
treated HeLa cells with DCFH-DA and monitored the fluores-
cence of oxidized DCFH-DA in HeLa cells after ozone treat-
ment. As a result, we observed the ROS production by ozone 
treatment at early phase (Fig. 2A). To investigate the effect 
of ROS production on HO-1 induction by ozone treatment at 
late phase, we used NAC as ROS inhibitor. We confirmed that 
NAC treatment blocked ROS induction by ozone treatment in 
HeLa cells (Fig. 2A). Further, we measured the mRNA expres-
sion of COX-2 and HO-1 induced by ozone treatment with or 
without ROS inhibitors. Interestingly, HO-1 induction was 
completely blocked by ROS inhibitor, while COX-2 induc-
tion was not affected (Fig. 2B, C). These results suggested that 
ROS production by ozone treatment via NF-κB signaling is an 
essential step for anti-oxidant response, such as HO-1 induc-
tion (Fig. 3).

Conclusion   Here we demonstrated that the rapid NF-κB 
activation followed by ROS production is necessary for Nrf2-
target gene, HO-1 induction by ozonated medium treatment 
(Fig. 1C and Fig. 2). However, it is still unknown how ozo-
nated medium activates NF-κB signaling. In major autohemo-
therapy (MAH), that is representative ozone therapy, periph-
eral blood from the patient is mixed with ozone gas, and then 
reinfused into the patients. Injected ozone gas is immediate-
ly dissolved in blood and reacts with unsaturated fatty acid 
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Fig. 1.   Ozone Treatment Activates NF-κB Signaling, Prior to HO-1 Induction 
A,B, HeLa cells were cultured with ozonated medium (30 µg O3/mL) for indicated period in a 24-well plate, and then mRNA expression of COX-2/HO-1 were measured by 

qPCR. Results are representative of three independent experiments, and the error bars represent the SD. C, HeLa cells in a 24-well plate were transfected with human NF-κB (p65) 
or control siRNAs (20 pmol). At 24 h after transfection, cells were cultured with ozonated medium (30 µg O3/mL) for indicated period, and then mRNA expression of HO-1 was 
measured by qPCR. Results are representative of three independent experiments, and the error bars represent the SD. D, To confirm the knockdown of NF-κB (p65) in HeLa cells, 
an aliquot of total cell lysates was analyzed by immunoblotting using anti-p65 or anti-Actin antibody.

Fig. 2.   ROS Production via NF-κB Signaling is Critical for HO-1 Induction by Ozone Treatment 
A, HeLa cells in a 6-well plate were cultured with ozonated medium and 3 mM NAC (ROS inhibitor) for 30 min, and then cells were incubated with 10 µM DCFH-DA for  

30 min. The ROS production was observed by confocal microscope as fluorescence intensity (green) of oxidated DCFH. Results are representative of three independent experi-
ments. B-E, HeLa cells were cultured with ozonated medium and NAC for indicated period in a 24-well plate, and then mRNA expression of COX-2/HO-1 were measured by 
qPCR. Results are representative of three independent experiments, and the error bars represent the SD.
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leading to the generation of second messengers such as H2O2, 
4-hydroxynonenal (4HNE) and other lipid oxidation products 
(LOPs). It has been reported that these second messengers are 
the key factor for Nrf2 and NF-κB activation resulting in anti-
oxidant reaction.34,36) From these findings, it can be predicted 
that NF-κB signaling is activated not by ozone gas directly, 
but by some second messengers in ozonated medium (Fig. 3).  
To identify the mediator for NF-κB activation in ozonated 
medium, we have examined the necessity of FBS and low-den-
sity lipoprotein (LDL) receptor for NF-κB activation. Howev-
er we are still not getting the direct evidence indicating which 
components are the novel mediator of NF-κB activation during 
ozone treatment from our preliminary data (data not shown). 
Further study will be needed to understand the detailed mech-
anism of NF-κB and Nrf2 activation by ozonated medium, that 
will be useful to improve clinical efficacy of ozone therapy.
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