BPB Reports 🎲

Regular Article

Screening of Industrial and Agricultural Chemicals for Searching a Mouse PXR Activator Using Cell-Based Reporter Gene Assays

Ryota Shizu,^a Makoto Kano,^a Taiki Abe,^{a,b} Saki Tsuchiya,^a Yuki Shimizu,^a Michiko Watanabe,^a Takuomi Hosaka,^a Takamitsu Sasaki,^a and Kouichi Yoshinari^{*,a,b}

^aLaboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, 52–1 Yada, Suruga-ku, Shizuoka 422–8526 Japan; ^bLaboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6–3 Aramaki-Aoba, Aoba-ku, Sendai 980–8578 Japan Received September 24, 2018; Accepted September 25, 2018

The nuclear receptor pregnane X receptor (PXR, NR112) regulates several liver functions such as xenobiotic metabolism, energy metabolism, inflammation or cell growth, which are associated with drug-drug interactions and some diseases. It is well known that there are large species differences between human PXR and mouse PXR (mPXR) ligands. Although mouse models are often used in biological research, the number of mPXR ligands are limited. In the present study, we have thus searched mPXR activators from 190 industrial chemicals and 161 agricultural chemicals by reporter assay system with a promoter region of PXR target gene, and mouse primary hepatocytes and mice were treated with the candidates to confirm mPXR activation. Thirty-eight chemicals were selected after reporter assay screening. Among them, seven chemicals were selected as potential mPXR activators since their treatment increased mRNA levels of *Cyp3a11*, a representative PXR target gene, in mouse primary hepatocytes. Finally, in *in vivo* experiments using mice, hepatic *Cyp3a11* mRNA levels were induced by treatment with flusilazole and metconazole. These results suggest that these two chemicals function as mPXR activators *in vitro* and *in vivo*.

Key words nuclear receptor, in vitro screening, cytochrome P450 induction

INTRODUCTION

Pregnane X receptor (PXR, NR112) is a nuclear receptor highly expressed in the liver and intestine. The receptor is activated by the binding of its ligand xenobiotics and transactivates multiple genes encoding drug-metabolizing enzymes and drug transporters, which play key roles in xenobiotic disposition. In the basal condition, PXR is inactive and retained in the cytoplasm. Upon ligand binding, it is translocated into nucleus and forms a heterodimer with retinoid X receptor α (RXR α). The heterodimer binds to promoter regions of the target genes to induce their transcriptions. By inducing metabolism and excretion, PXR protects our body from harmful xenobiotics. In addition, ligand-activated PXR plays several roles in the liver or intestine such as energy metabolism,¹⁾ cell proliferation,^{2,3)} cell migration^{4,5)} and inflammatory responses.^{6,7)}

For these studies, mice have been the leading models, and especially PXR-deficient and disease model mice are essential to these biomedical researches. However, there is a large species difference in PXR ligands between human and mouse, and mouse PXR (mPXR) ligands is limited while a lot of human PXR (hPXR) ligands have been identified including rifampicin, rifaximin, statins, clotrimazole, hyperforin and SR12813. The typical hPXR ligand rifampicin is unable to activate mPXR, and the typical mPXR activator pregnenolone 16α -carbonitrile (PCN) is inactive for hPXR.⁸⁾ Therefore, most of mouse studies on PXR utilizes PCN and basically the results have not been confirmed with other mPXR activators because of its unavailability. These facts indicate that it is of great importance to identify a mPXR activator(s) other than PCN.

In the present study, we have screened 190 industrial chemicals and 161 agricultural chemicals for their mPXR-activating abilities by reporter assay system with a promoter region of PXR target gene. Moreover, mouse primary hepatocytes and mice were treated with potential mPXR activators to investigate their effects in mouse livers.

MATERIALS AND METHODS

Reagents PCN was purchased from Sigma-Aldrich (St. Louis, MO). 5x(dNR1)-5x(eNR3A4)-pGL3 and mPXR-pTargeT were prepared previously.⁹⁾ phRL-TK (Promega, Madison, WI) was used as a control plasmid to normalize transfection efficacy.

Reporter Assay HepG2 cells (RIKEN BioResource Center, Tsukuba, Japan) were seeded on 96-well plates at 10,000 cells/well. The cells were transfected with 5x(dNR1)-5x(eNR3A4)-pGL3, mPXR-pTargeT and phRL-TK with Jet-PEI (Polyplus transfection, Illkirch, France). Twenty-four hours after transfection, cells were treated with test chemicals, 10 μ M PCN or vehicle (final concentration of 0.1% dimethyl sulfoxide (DMSO)) for 24 h. The cell lysates were subjected to Dual Luciferase Assay System (Promega). Firefly luciferase activity was normalized to Renilla luciferase activity.

Mouse Primary Hepatocyte Mouse primary hepatocytes were prepared and cultured as previously reported.¹⁰⁾ Cells were treated with test chemicals, 10 μ M PCN or vehicle (final concentration of 0.1% DMSO) for 24 h and total RNA was extracted.

Animal Treatment All experiments were performed in accordance with the guidelines for animal experiments of University of Shizuoka. Seven to eight weeks old male C57BL/6N mice, (Charles River Japan, Yokohama, Japan) maintained in a temperature- and light-controlled environment (24°C, 12-h light/dark cycle), were intraperitoneally treated with test chemicals (100 mg/kg), PCN (100 mg/kg) or vehicle (corn oil, 20 mL/kg). Twenty-four hours after the treatment, mice were sacrificed by cervical dislocation and the livers were collected.

Determination of mRNA Levels Total RNA isolation and cDNA synthesis were carried out as described previously.²⁾ Quantitative reverse transcription-PCR (qRT-PCR) was performed using GoTaq qPCR Master Mix (Promega) and primer pairs for genes of interest as shown previously.⁹⁾ Target mRNA levels were normalized by *Actb* mRNA levels.

Statistical Analysis Statistical analysis was performed using JMP Pro 12 (SAS Institute, Cary, NC). All data are provided as the means \pm SD. The significance of difference between control and treated groups was assessed using ANO-VA followed by Dunnett's test.

RESULTS

Next, mouse primary hepatocytes were treated with the selected candidates for 24 h, and the mRNA levels of *Cyp3a11*, a PXR target gene, and *Cyp1a2*, a target gene of xenobiotic-responsive transcription factor aryl hydrocarbon receptor (AHR), as a negative control, were determined. As results, I33, I58, I74, I169, I174, A100, A124, A131 and A152 significantly increased *Cyp3a11* mRNA levels as did PCN (Fig. 1). I58, I117, I169, I190, A5, A40 and A152 also increased *Cyp1a2* mRNA levels with statistical significances (Fig. 1). According to the results, I33, I74, I174, A100, A124, A131 and A152 were selected for the 3rd screening.

In the 3rd screening, male mice were intraperitoneally treated with 100 mg/kg of each candidate, PCN or vehicle for 24 h, and hepatic RNAs were subjected to qRT-PCR to determine the mRNA levels of *Cyp3a11*, *Cyp1a2* and *Cyp2b10*, another PXR target gene. The results are shown in Fig. 2. A100 and A131 significantly increased *Cyp3a11* mRNA levels as much as PCN and increased *Cyp2b10* mRNA levels greater than PCN. A100 but not A131 slightly increased *Cyp1a2* mRNA levels.

In contrast, I33, I74, A124 had no effect on these mRNA levels except a minimal increase in *Cyp1a2* mRNA levels by A124. I174 and A152 slightly increased *Cyp3a11* mRNA lev-

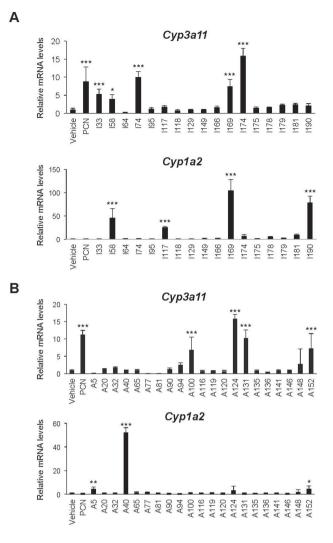


Fig. 1. Screening for mPXR Activators in Mouse Primary Hepatocytes

Mouse primary hepatocytes were treated with vehicle (0.1% DMSO), PCN (10 μ M), or each industrial (100 μ M; **A**) and agricultural chemicals (10 μ M; **B**) for 24 h. Total RNA was extracted and subjected to qRT-PCR for *Cyp3a11* and *Cyp1a2*. Values are the mean \pm SD (n = 4). *, p < 0.05; **, p < 0.01; ***, p < 0.001 (Dunnett's test versus vehicle-treated group).

els, and strongly induced *Cyp1a2* mRNA levels, suggesting that they are AHR activators. From these results, agricultural chemicals A100 and A131 were identified as mPXR activators that work *in vivo*.

DISCUSSION

In this study, we searched a mPXR activator(s) from industrial and agricultural chemicals and characterized two agricultural chemicals flusilazole (A100) and metconazole (A131) as potential mPXR activators (Fig. 3). We also identified several chemicals that activated mPXR in cell-based reporter assays and mouse primary hepatocytes but not in the liver of mice.

PXR sometimes shares its ligand with a very close nuclear receptor constitutive active/androstane receptor (CAR, NR113).¹¹⁾ *Cyp3a11* and *Cyp2b10* are common target genes of mPXR and mouse CAR (mCAR), and increases in *Cyp3a11* and *Cyp2b10* mRNA levels in mouse livers are mainly regulated by mPXR and mCAR, respectively. Thus, by comparing the induction levels of these mRNA levels, we can assume which receptor is activated. Because flusilazole and metconazole

BPB Reports

 Table 1.
 List of Industrial Chemicals Tested and Their Induction Ratios in Reporter Assays

No.	CAS No.	Name	MW	% induction
169	608-93-5	pentachlorobenzene	250.3	184.5
58	84-51-5	2-ethylanthraquinone	236.3	170.2
78	2440-22-4	2-(2H-benzotriazol-2-yl)-4-methyl-phenol	225.2	108.5
17	82-45-1	1-aminoanthraquinone	223.2	73.9
90	42240-73-3	2,2',3,3'-tetrachloro-4,4'-diaminodiphenylmethane	336.0	64.8
.66	6362-80-7	2,4-diphenyl-4-methyl-1-pentene	236.4	49.4
29	95-73-8	2,4-dichlorotoluene	161.0	34.7
95	620-92-8	4,4'-methylenediphenol	200.2	33.1
75	80-04-6	hydrogenated bisphenol A	240.4	31.9
49	118-79-6	2,4,6-tribromophenol	330.8	31.3
3	78-51-3	tris(2-butoxyethyl) phosphate	398.5	28.0
74	80-07-9	bis(<i>p</i> -chlorophenyl) sulfone	287.2	25.2
79	2219-82-1	6- <i>tert</i> -butyl- <i>o</i> -cresol	164.2	24.9
4	76-83-5	trityl chloride	278.8	23.5
81	2173-57-1	2-isobutoxynaphthalene	200.3	22.8
18	85-41-6	phthalimide	147.1	21.8
4	102-06-7	1,3-diphenylguanidine	211.3	20.3
2	1241-94-7	2-ethylhexyl diphenyl phosphate	362.4	17.9
4	2416-94-6	2,3,6-trimethylphenol	136.2	17.9
04	517-23-7	3-acetotetrahydrofuran-2-one	128.1	17.8
88	208-96-8	acenaphthylene	152.2	17.5
9	79-39-0	methacrylamide	85.1	17.4
2	3648-21-3	diheptyl phthalate	362.5	16.7
3	1025-15-6	1,3,5-tris(2-propenyl)isocyanuric acid	249.3	16.1
05	2580-78-1	reactive blue 19	626.5	15.8
86	91-96-3	N_N' -(3,3'-dimethylbiphenyl-4,4'-ylene)di(acetoacetamide)	380.4	15.7
30 70	95-94-3	1,2,4,5-tetrachlorobenzene	215.9	14.7
54	536-90-3	3-methoxybenzenamine	123.2	14.2
22	89-72-5	o-sec-butylphenol	150.2	14.0
2	99-71-8	4-(1-methylpropyl)phenol	150.2	13.8
1	88-19-7	o-toluenesulfonamide	171.2	12.4
76	99-54-7	1,2-dichloro-4-nitrobenzene	192.0	12.4
9	88-18-6	2- <i>tert</i> -butylphenol	150.2	12.1
65	4457-71-0	3-methyl-1,5-pentanediol	118.2	11.8
27	92-88-6	4,4'-biphenyldiol	186.2	11.2
86	95-32-9	2-(4-morpholinyldithio)benzothiazole	284.4	11.1
3	7803-57-8	hydrazine monohydrate	50.1	10.8
9	103-83-3	N,N-dimethylbenzylamine	135.2	10.4
7	97-39-2	N,N'-bis(2-methylphenyl)guanidine	358.4	10.2
21	88-60-8	6- <i>tert</i> -butyl- <i>m</i> -cresol	164.2	10.2
21	95-64-7	3,4-dimethylaniline	121.2	9.7
.03	134-62-3	<i>N</i> , <i>N</i> -diethyl- <i>m</i> -toluamide	191.3	9.5
80	103-44-6	3-[(vinyloxy)methyl]heptane	156.3	8.7
45	111-82-0	methyl dodecanoate	214.3	8.5
3	96-29-7	ethyl methyl ketoxime	87.1	8.3
6	97-52-9	4-nitro-o-anisidine	168.2	7.9
36	102-76-1	triacetin	218.2	7.7
59	688-84-6	2-ethylhexyl methacrylate	198.3	7.5
60	839-90-7	1,3,5-tris(2-hydroxyethyl)-1,3,5-triazine-2,4,6-(1 <i>H</i> ,3 <i>H</i> ,5 <i>H</i>)-trione	261.2	7.4
67	6846-50-0	2,2,4-trimethyl-1,3-pentanediol diisobutyrate	286.4	7.4
23	89-83-8	thymol	150.2	7.3
14	78-67-1	2,2'-azobis(2-methylpropanenitrile)	164.2	7.0
3	106-37-6	1,4-dibromobenzene	235.9	6.6
3	26471-62-5	tolvlene diisocyanate	174.2	6.5
40	107-66-4	dibutyl phosphate	210.2	6.2
40 09	95-68-1		121.2	6.1
		2,4-dimethylaniline		
72	125-33-7	primidone	218.3	6.0
20	88-09-5	2-ethylbutanoic acid	116.2	5.9
6	51-28-5	2,4-dinitrophenol	184.1	5.8
42	108-65-6	1-methoxy-2-propanol acetate	132.2	5.8
34	99-96-7	4-hydroxybenzoic acid	138.1	5.7
89	123-63-7	2,4,6-trimethyl-1,3,5-trioxane	132.2	5.6
62	3048-65-5	3a,4,7,7a-tetrahydro-1 <i>H</i> -indene	120.2	5.2
47	115-77-5	pentaerythritol	136.2	5.1
61	882-33-7	diphenyl disulfide	218.3	5.1
50	123-11-5	4-methoxybenzaldehyde	136.2	4.9
.5	127-68-4	sodium 3-nitrobenzenesulfonate	225.2	4.7
1	86-87-3	1-naphthylacetic acid	186.2	4.5
16	81-16-3	2-amino-1-naphthalenesulfonic acid	223.3	4.3
1	109-64-8	1,3-dibromopropane	201.9	4.2
39	105-45-3	methyl acetoacetate	116.1	4.2
-6	130-13-2	sodium 4-amino-1-naphthalenesulfonate	317.3	4.1
0	80-09-1	bis(4-hydroxyphenyl)sulfone	250.3	4.1

No.	CAS No.	Name	MW	% induction
35	80-51-3	4,4'-oxybis(benzenesulfonyl hydrazide)	358.4	4.0
107	29836-26-8	1-O-octyl -β-D-glucopyranoside	292.4	4.0
187	103-64-0	β-bromostyrene	183.1	4.0
152	126-30-7	2,2-dimethyl-1,3-propanediol	104.2	3.8
20	87-02-5	7-amino-4-hydroxy-2-naphthalenesulfonic acid	239.3	3.7
183	75-66-1	2-methylpropane-2-thiol	90.2	3.6
71	620-17-7	<i>m</i> -ethylphenol	122.2	3.5
57	611-19-8	1-chloro-2-(chloromethyl)benzene	161.0	3.5
	99-09-2	3-nitroaniline	138.1	3.4
28				
	585-07-9	<i>tert</i> -butyl methacrylate	142.2	3.4
34	56539-66-3	3-methoxy-3-methyl-1-butanol	118.2	3.2
11	77-73-6	dicyclopentadiene	132.2	2.9
18	16219-75-3	5-ethylidene-2-norbornene	120.2	2.6
88	100-69-6	2-vinylpyridine	105.1	2.5
53	512-56-1	trimethyl phosphate	140.1	2.5
68	7580-85-0	2-tert-butoxyethanol	118.2	2.3
71	51-79-6	urethane	89.1	2.3
77	873-32-5	2-chlorobenzonitrile	137.6	2.1
41	108-44-1	<i>m</i> -toluidine	107.2	2.0
64	4189-44-0	thiourea S,S-dioxide	108.1	1.9
10	100-47-0	benzonitrile	103.1	1.8
19	87-62-7	2,6-dimethylaniline	121.2	1.8
)	156-43-4	4-ethoxybenzenamine	137.2	1.5
14	101-83-7	dicyclohexylamine	181.3	1.5
00	108-87-2	methylcyclohexane	98.2	1.5
35	87-59-2	2,3-xylidine	121.2	1.4
52	95-57-8	2-chlorophenol	128.6	1.1
84	57-30-7	phenobarbital sodium	255.2	0.8
10	70-55-3	4-methylbenzenesulfonamide	171.2	0.7
.58	623-91-6		171.2	0.7
		diethyl fumarate		
94	102-81-8	2-(di- <i>n</i> -butylamino)ethanol	173.3	0.6
26	91-76-9	2,4-diamino-6-phenyl-1,3,5-triazine	187.2	0.5
51	123-42-2	diacetone alcohol	116.2	0.5
50	88-89-1	2,4,6-trinitrophenol	229.1	-0.1
21	88-44-8	2-amino-5-methylbenzenesulfonic acid	187.2	-0.2
13	77-99-6	2-ethyl-2-(hydroxymethyl)-1,3-propanediol	134.2	-0.2
182	4130-42-1	2,6-di- <i>tert</i> -butyl-4-ethylphenol	234.4	-0.3
37	100-54-9	3-cyanopyridine	104.1	-0.4
75	98-51-1	<i>p-tert</i> -butyltoluene	148.3	-0.7
55	106-48-9		148.5	-0.9
		4-chlorophenol		
156	611-06-3	2,4-dichloro-1-nitrobenzene	192.0	-1.1
13	3586-14-9	3-phenoxytoluene	184.2	-1.2
1	2216-69-5	1-methoxynaphthalene	158.2	-1.4
17	842-18-2	potassium 7-hydroxy-1,3-naphthalenedisulfonate	380.5	-1.4
52	121-45-9	trimethoxyphosphine	124.1	-1.5
5	5707-44-8	4-ethyl-1,1'-biphenyl	182.3	-1.6
9	56-93-9	benzyltrimethylammonium chloride	185.7	-1.7
2	100-61-8	<i>N</i> -methylaniline	107.2	-1.8
15	78-97-7	2-hydroxypropanenitrile	71.1	-2.3
4	83-32-9	acenaphthene	154.2	-2.6
		*		
08	118-91-2	2-chlorobenzoic acid	156.6	-2.6
6	108-39-4	3-methylphenol	108.1	-2.7
46	111-88-6	1-octanethiol	146.3	-3.0
Ļ	105-99-7	dibutyl adipate	258.4	-3.1
2	657-84-1	sodium <i>p</i> -toluenesulfonate	194.2	-3.2
.7	126-33-0	tetrahydrothiophene-1,1-dioxide	120.2	-3.3
1	111-17-1	3,3'-thiobispropionic acid	178.2	-3.3
55	542-18-7	chlorocyclohexane	118.6	-3.3
6	583-39-1	2-mercaptobenzimidazole	150.2	-3.5
2	112-26-5		130.2	-3.5
		1,2-bis(2-chloroethoxy)ethane		
8	79-27-6	tetrabromoethane	345.7	-3.9
25	91-15-6	1,2-benzenedicarbonitrile	128.1	-4.3
32	98-83-9	1-methylethenylbenzene	118.2	-4.3
37	103-24-2	bis(2-ethylhexyl) nonanedioate	412.7	-4.3
43	108-80-5	isocyanuric acid	129.1	-4.3
59	591-27-5	3-aminophenol	109.1	-4.4
40	108-69-0	3,5-dimethylaniline	121.2	-4.6
.9	626-17-5	1,3-dicyanobenzene	128.1	-4.9
8	97-99-4	tetrahydrofurfuryl alcohol	102.1	-4.9
12	77-85-0	1,1,1-tris(hydroxymethyl)ethane	120.2	-5.0
96	96-45-7	2-imidazolidinethione	102.2	-5.1
02	121-60-8	p-(acetylamino)benzenesulfonyl chloride	233.7	-5.6

No.	CAS No.	Name	MW	% induction
[61	95-50-1	o-dichlorobenzene	147.0	-5.7
98	96-49-1	1,3-dioxolan-2-one	88.1	-6.0
130	97-88-1	butyl methacrylate	142.2	-6.0
77	6099-57-6	1-naphthol-4-sulfonic acid sodium salt	246.2	-6.3
22	95-63-6	1,2,4-trimethylbenzene	120.2	-6.7
128	93-68-5	o-acetoacetotoluidide	191.2	-6.7
3	103-69-5	<i>N</i> -ethylaniline	121.2	-6.8
10	5460-9-3	monosodium 4-amino-5-hydroxy-2,7-naphthalenedisulfonate	341.3	-6.9
148	118-69-4	2,6-dichlorotoluene	161.0	-7.0
144	110-02-1	thiophene	84.1	-7.2
90	100-74-3	4-ethylmorpholine	115.2	-7.4
30	1843-05-6	2-hydroxy-4-(octyloxy)benzophenone	326.4	-7.5
25	111-41-1	N-(aminoethyl)ethanolamine	104.2	-7.6
131	98-08-8	trifluoromethylbenzene	146.1	-7.6
89	99-94-5	4-methylbenzoic acid	136.2	-7.8
7	88-53-9	2-amino-5-chloro-4-methyl-benzenesulfonic acid	221.7	-8.7
133	99-04-7	3-methyl benzoic acid	136.2	-8.9
14	121-47-1	3-aminobenzenesulfonic acid	173.2	-9.4
[15	526-78-3	2,3-dibromosuccinic acid	275.9	-9.6
76	108-73-6	1,3,5-trihydroxybenzene	126.1	-9.6
17	623-26-7	terephthalonitrile	128.1	-10.0
18	1477-55-0	1,3-bis(aminomethyl)benzene	136.2	-11.6
163	3452-97-9	3,5,5-trimethyl-1-hexanol	144.3	-12.1
124	90-02-8	2-hydroxybenzaldehyde	122.1	-12.9
82	1552-42-7	3,3-bis(<i>p</i> -dimethylaminophenyl)-6-dimethylaminophthalide	415.5	-18.1
106	4435-53-4	3-methoxy- <i>n</i> -butylacetate	146.2	-18.3
138	105-16-8	2-(diethylamino)ethyl methacrylate	185.3	-20.1
67	109-70-6	1-bromo-3-chloropropane	157.4	-20.1
[8	140-66-9	<i>p-tert</i> -octylphenol	206.3	N/A
9	538-75-0	<i>N,N</i> ⁻ dicyclohexylcarbodiimide	206.3	N/A N/A
24	96-69-5	4,4'-thiobis(6- <i>tert</i> -butyl- <i>m</i> -cresol)	358.5	N/A N/A
124	119-47-1	2,2'-methylenebis(6- <i>tert</i> -butyl- <i>p</i> -cresol)	340.5	N/A N/A
[41	123-30-8	4-aminophenol	109.1	N/A N/A
53	793-24-8	N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine	268.4	N/A N/A
53 57	79-94-7	4,4 ² -isopropylidenebis(2,6-dibromophenol)	543.9	N/A N/A
	96-76-4			
63 68	96-76-4 123-07-9	2,4-di- <i>tert</i> -butylphenol	206.3 122.2	N/A N/A
168 170		4-ethylphenol	212.3	
	599-64-4	p -(α, α -dimethylbenzyl)phenol		N/A
79	101-72-4	<i>N</i> -phenyl- <i>N</i> '-isopropyl- <i>p</i> -phenylenediamine	226.3	N/A
80	109-59-1	2-(1-methylethoxy)ethanol	104.2	N/A
97	77-90-7	acetyl tributyl citrate	402.5	N/A
101	118-75-2	2,3,5,6-tetrachloro- <i>p</i> -benzoquinone	245.9	N/A
135	101-14-4	4,4'-methylenebis(2-chlorobenzenamine)	267.2	N/A
173	87-86-5	pentachlorophenol	266.3	N/A
185	84852-15-3	4-nonylphenol, branched	220.4	N/A

Reporter assays were performed as described in Materials and Methods. The values of % induction indicate the ratios (%) of reporter activities to those in the cells treated with PCN being set as 100%. The values are the means of quadruplicate. MW, molecular weight. N/A, reporter activities were not detected because of cell death.

Table 2. List of Agricultural Chemicals Tested and Their Induction Ratios in Reporter Assays

No.	CAS No.	Name	MW	% induction
A148	148477-71-8	spirodiclofen	411.3	478.3
A135	135590-91-9	mefenpyr-diethyl	373.2	102.3
A5	131860-33-8	azoxystrobin	403.4	90.3
A119	40487-42-1	pendimethalin	281.3	87.0
A40	122453-73-0	chlorfenapyr	407.6	84.6
A77	175013-18-0	pyraclostrobin	387.8	81.3
A120	110956-75-7	pentoxazone	353.8	79.9
A136	55814-41-0	mepronil	269.4	78.7
A152	119-12-0	pyridaphention	340.3	75.1
A65	141517-21-7	trifloxystrobin	408.4	73.6
A90	55-38-9	fenthion	278.3	64.3
A100	85509-19-9	flusilazole	315.4	58.7
A32	124495-18-7	quinoxyfen	308.1	58.1
A124	374726-62-2	mandipropamid	411.9	54.0
A81	96489-71-3	pyridaben	364.9	52.4
A20	153233-91-1	etoxazole	359.4	51.3
A94	36335-67-8	butamifos	332.4	50.4
A141	2597-03-7	phenthoate	320.4	49.2

Table 2. Continued

No.	CAS No.	Name	MW	% induction
A131	125116-23-6	metoconazole	319.8	46.1
A116	22781-23-3	bendiocarb	223.2	45.9
4146	1582-09-8	trifluralin	335.3	43.7
491	158237-07-1	fentrazamide	349.8	43.0
A144	143390-89-0	kresoxim-methyl	313.3	41.5
A101	66332-96-5	flutolanil	323.3	38.9
A64	78-48-8	tribufos	347.3	38.8
A15	86598-92-7	imibenconazole	411.7	38.1
A85	95737-68-1	pyriproxyfen	321.4	37.2
155	64249-01-0	anilofos	367.9	36.7
A145	22936-75-0	dimethametryn	255.4	35.8
A63	24017-47-8	triazophos	313.3	34.0
A110	74712-19-9	bromobutide	312.3	33.7
A74	179877-41-8	bifenazate	300.4	33.5
A118	183675-82-3	penthiopyrad	359.4	33.5
125	153197-14-9	oxaziclomefone	376.3	33.0
489	161326-34-7	fenamidone	311.4	32.8
A26	42874-03-3	oxyfluorfen	361.7	32.4
A154	97-17-6	dichlofenthion	315.2	32.2
A27	248593-16-0	orysastrobin	391.4	31.4
488	115852-48-7	fenoxanil	329.2	31.2
A121	1861-40-1	benfluralin	355.3	28.1
A105	51218-49-6	pretilachlor	311.9	27.8
A99	131341-86-1	fludioxonil	248.2	27.6
428	95465-99-9	cadusafos	270.4	27.3
A130	161050-58-4	methoxyfenozide	368.5	27.2
447	97886-45-8	dithiopyr	401.4	27.0
A12	26087-47-8	iprobenfos	288.3	24.9
A108	122-42-9	propham	179.2	24.3
A83	135186-78-6	pyriftalid	318.4	23.6
139	15972-60-8	alachlor	269.8	23.6
160	119446-68-3	difenoconazole	406.3	23.6
45	141-66-2	dicrotophos	237.2	23.2
114	66063-05-6	pencycuron	328.8	23.1
492	114369-43-6	fenbuconazole	336.8	22.4
443	139920-32-4	diclocymet	313.2	21.4
486	799247-52-2	pyribencarb	361.8	21.4
4123	188425-85-6	boscalid	343.2	20.5
4115	83055-99-6	bensulfuron methyl	410.4	19.6
A158	658066-35-4	flufenacet	396.7	19.5
A150	881685-58-1	isopyrazam	359.4	19.0
493	126833-17-8	fenhexamid	302.3	18.3
A129	2032-65-7	methiocarb	225.3	17.2
A41	260121-52-0	cyenopyrafen	393.5	16.8
A2	86-50-0	azinphos-methyl	317.1	15.8
139	2921-88-2	chlorpyrifos	350.6	15.8
123	19666-30-9	oxadiazon	345.2	15.4
A24	39807-15-3	oxadiargyl	341.2	15.1
A82	179101-81-6	pyridalyl	491.1	15.0
A109	181274-15-7	propoxycarbazone-sodium	421.3	14.3
A137	103055-07-8	lufenuron	511.2	14.3
A151	20354-26-1	methazole	270.3	13.7
A17	85785-20-2	esprocarb	265.4	12.9
133	51218-45-2	metolachlor	283.8	12.9
A37	84496-56-0	clomeprop	249.1	12.5
A16	83659-17-4	uniconazole P	291.8	12.2
A70	27314-13-2	norflurazon	303.7	12.0
102	101463-69-8	flufenoxuron	488.5	11.7
129	125306-83-4	cafenstrole	350.4	11.3
175	82657-04-3	bifenthrin	422.9	11.3
A61	107534-96-3	Tebuconazole	307.8	11.5
121	80884-07-1	etofenprox	376.5	11.1
A78	158353-15-2	pyraclonil	314.8	10.9
197	229977-93-9	fluacrypyrim	426.4	10.1
198	239110-15-7	fluopicolide	383.6	9.9
A50	180409-60-3	cyflufenamid	412.4	9.4
A103	272451-65-7	flubendiamide	682.4	9.4
480	129630-19-9	pyraflufen-ethyl	413.2	8.9
453	110488-70-5	dimethomorph	387.9	8.3
A11	50512-35-1	isoprothiolane	290.4	8.1
A127	10265-92-6	methamidophos	141.1	8.1
1 1 4 1	10205-72-0	metenacet	298.4	8.1

Table 2. Continued

No.	CAS No.	Name	MW	% induction
.46	37764-25-3	dichlormid	208.1	7.4
107	158-474-72-7	prohydrojasmon	254.4	6.8
126	108-62-3	metaldehyde	176.2	6.8
.149	98967-40-9	flumetsulam	325.3	6.8
.62	115410-23-8	tebufenozide	352.5	5.9
161	121552-61-2	cyprodinil	225.3	5.9
14	138261-41-3	imidacloprid	255.7	5.7
13	135410-20-7	acetamiprid	222.7	5.4
18	55283-68-6	ethalfluralin	333.3	5.3
A104	59756-60-4	fluridone	329.3	4.6
104	105024-66-6	silafluofen	408.6	4.0
173	137641-05-5	picolinafen	376.3	4.2
A 4	30560-19-1	1	183.2	4.2
14 179		acephate		
	365400-11-9	pyrasulfotole	362.3	4.0
128	70630-17-0	metalaxyl	279.3	3.9
19	181587-01-9	ethiprole	397.2	3.8
132	133408-50-1	metominostrobin	284.3	3.3
136	143807-66-3	chromafenozide	394.5	3.2
106	158062-67-0	flonicamid	229.2	2.9
59	18249-77-6	thiobencarb	257.8	2.6
151	149508-90-7	simeconazole	293.4	2.4
152	87674-68-8	dimethenamid	275.8	2.2
.13	104098-48-8	imazapic	275.3	2.1
42	113136-77-9	cyclanilide	274.1	1.9
172	100764-20-1	halosulfuron-methyl	434.8	1.5
112	98730-04-2	benoxacor	260.1	1.5
44	145701-21-9	diclosulam	405.0	1.5
184	337458-27-2	pyrifluquinazon	464.3	1.2
142	123572-88-3	furametpyr	333.8	1.1
A142 A156		molinate	187.3	1.1
	2212-67-1			
138	54593-83-8	chlorethoxyfos	336.0	0.7
.95	69327-76-0	buprofezin	305.4	0.7
19	834-12-8	ametryn	227.3	0.5
A10	141112-29-0	isoxaflutole	359.3	-0.7
133	99485-76-4	cumyluron	302.8	-0.8
122	68505-69-1	benfuresate	256.3	-0.9
158	153719-23-4	thiamethoxam	291.7	-1.2
31	76578-14-8	quizalofop-ethyl	372.8	-1.3
117	177406-68-7	benthiavalicarb-isopropyl	381.5	-1.3
155	66215-27-8	cyromazine	166.2	-1.4
A125	88671-89-0	myclobutanil	288.8	-1.4
A113	219714-96-2	penoxsulam	483.4	-1.5
196	208465-21-8	primisulfuron-methyl	468.3	-1.9
49	165252-70-0	dinotefuran	202.2	-2.0
1	62476-59-9	acifluorfen	361.7	-2.1
				-2.1
18	61-82-5	amitrole	84.1	
168	4684-94-0	nitrapyrin	290.9	-2.6
122	13194-48-4	ethoprophos	242.3	-3.0
60	51707-55-2	thidiazuron	220.3	-3.6
.111	51235-04-2	hexazinone	252.3	-4.2
48	142891-20-1	cinidon-ethyl	394.3	-4.5
153	1918-00-9	dicamba	221.0	-4.6
.7	33089-61-1	amitraz	293.4	-5.2
.87	221205-90-9	pyrimisulfan	419.4	-6.1
30	5234-68-4	carboxin	235.3	-7.8
34	77182-82-2	glufosinate-ammonium	198.2	-8.0
67	86-87-3	1-naphthaleneacetic acid, sodium salt	186.2	-8.7
35	210880-92-5	clothianidin	249.7	-9.5
466	129558-76-5	tolfenpyrad	383.9	-10.3
.76	123312-89-0	pymetrozine	217.2	-15.1
.69	116714-46-6	novaluron	492.7	-16.5
		paclobutrazol	293.8	-10.5 -22.5
.71	76738-62-0			
159	142459-58-3	fluopyram	363.3	-59.4
147	76674-21-0	flutriafol	301.3	-270.4
16	348635-87-0	amisulbrom	466.3	N/A
156	283594-90-1	spiromesifen	370.5	N/A
A57	156052-68-5	zoxamide	336.7	N/A
138	2104-64-5	EPN	323.3	N/A
140	23184-66-9	butachlor	311.9	N/A
143	71751-41-2	abamectin	887.1	N/A
41 T.J	11/01-1-2	usumostin	211.7	N/A N/A

The values were determined and are presented as in Table 1.

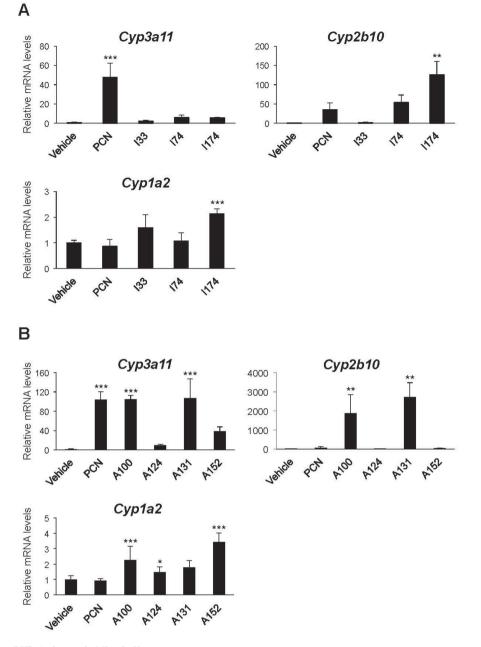


Fig. 2. Screening for mPXR Activators in Mice In Vivo

A, B. Male mice were treated intraperitoneally with vehicle (corn oil), PCN (100 mg/kg), or each test compound (100 mg/kg). Twenty-four hours later, total hepatic RNA was extracted and subjected to qRT-PCR for *Cyp3a11*, *Cyp2b10* and *Cyp1a2*. Values are the mean \pm SD (n = 3-4). *, p < 0.05; **, p < 0.01; ***, p < 0.001 (Dunnett's test, versus vehicle-treated group).

induced *Cyp2b10* mRNA levels much more than PCN, they may activate not only mPXR but also mCAR. Both of them are azole-class antifungal agents. Azole-class antifungals and antibiotics are often reported as inducers of cytochrome P450s (P450s) *via* PXR and CAR activation¹²) as well as P450 inhibitors. For example, clotrimazole, known as a hPXR activator, is also a CAR antagonist.¹¹) Voriconazole is considered as a dual agonist of mCAR and mPXR.¹³ Although our results clearly indicate that flusilazole and metconazole are reliable P450 inducers at least in mice, it is still required to reveal whether they are specific agonist for mPXR.

Because the ligand-dependent PXR activation has been shown to be species specific, typical hPXR specific ligands such as rifampicin or SR12813 cannot be used as PXR activators in rodent studies. Thus, the studies are usually conducted with the mouse and rat PXR-specific ligand PCN, which is the only confirmed and reliable mPXR activator. However, PCN is reported to antagonize glucocorticoid receptor¹⁴) and has PXR independent anti-inflammatory or anti-fibrogenesis effects.^{15,16}) Therefore, using only PCN as a mPXR activator may lead to misunderstandings of PXR's functions, and thus more mPXR activators are required. Some chemicals are reported as potential mPXR ligands such as 5 β -pregnane-3,20-dione, amprenavir and imazalil,^{8,9,17}) although further studies are needed. In this study, we found two mPXR activating chemicals flusilazole and metconazole. These chemicals may help us to reveal the physiological, pathophysiological and toxicological functions of PXR by biomedical studies using mice.

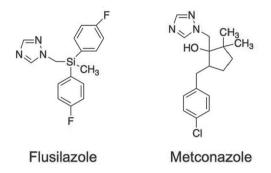


Fig. 3. Chemical Structures of mPXR Activators Identified

Acknowledgments This work was supported by JSPS KAKENHI Grant Number 17893283.

Conflict of Interest The authors declare no conflict of interest.

REFERENCES

- Hakkola J, Rysa J, Hukkanen J. Regulation of hepatic energy metabolism by the nuclear receptor PXR. *Biochim. Biophys. Acta*, 1859, 1072–1082 (2016).
- 2) Shizu R, Benoki S, Numakura Y, Kodama S, Miyata M, Yamazoe Y, Yoshinari K. Xenobiotic-Induced Hepatocyte Proliferation Associated with Constitutive Active/Androstane Receptor (CAR) or Peroxisome Proliferator-Activated Receptor alpha (PPARalpha) Is Enhanced by Pregnane X Receptor (PXR) Activation in Mice. *PLoS One*, 8, e61802 (2013).
- Shizu R, Abe T, Benoki S, Takahashi M, Kodama S, Miayata M, Matsuzawa A, Yoshinari K. PXR stimulates growth factor-mediated hepatocyte proliferation by cross-talk with the FOXO transcription factor. *Biochem. J.*, 473, 257–266 (2016).
- Kodama S, Negishi M. Pregnane X receptor PXR activates the GADD45beta gene, eliciting the p38 MAPK signal and cell migration. *J. Biol. Chem.*, 286, 3570–3578 (2011).
- Kodama S, Yamazaki Y, Negishi M. Pregnane X Receptor Represses HNF4alpha Gene to Induce Insulin-Like Growth Factor-Binding Protein IGFBP1 that Alters Morphology of and Migrates HepG2 Cells. *Mol. Pharmacol.*, 88, 746–757 (2015).
- 6) Mencarelli A, Renga B, Palladino G, Claudio D, Ricci P, Distrutti E, Barbanti M, Baldelli F, Fiorucci S. Inhibition of NF-kappaB by a PXR-dependent pathway mediates counter-regulatory activities of rifaximin on innate immunity in intestinal epithelial cells. *Eur. J.*

Pharmacol., 668, 317-324 (2011).

- 7) Zhou C, Tabb MM, Nelson EL, Grun F, Verma S, Sadatrafiei A, Lin M, Mallick S, Forman BM, Thummel KE, Blumberg B. Mutual repression between steroid and xenobiotic receptor and NF-kappaB signaling pathways links xenobiotic metabolism and inflammation. J. Clin. Invest., 116, 2280–2289 (2006).
- Jones SA, Moore LB, Shenk JL, Wisely GB, Hamilton GA, McKee DD, Tomkinson NC, LeCluyse EL, Lambert MH, Willson TM, Kliewer SA, Moore JT. The pregnane X receptor: a promiscuous xenobiotic receptor that has diverged during evolution. *Mol. Endocrinol.*, 14, 27–39 (2000).
- Yoshimaru S, Shizu R, Tsuruta S, Amaike Y, Kano M, Hosaka T, Sasaki T, Yoshinari K. Acceleration of murine hepatocyte proliferation by imazalil through the activation of nuclear receptor PXR. *J. Toxicol. Sci.*, 43, 443–450 (2018).
- 10) Abe T, Amaike Y, Shizu R, Takahashi M, Kano M, Hosaka T, Sasaki T, Kodama S, Matsuzawa A, Yoshinari K. Role of YAP activation in nuclear receptor CAR-mediated proliferation of mouse hepatocytes. *Toxicol. Sci.*, **165**, 408-419 (2018).
- 11) Moore LB, Parks DJ, Jones SA, Bledsoe RK, Consler TG, Stimmel JB, Goodwin B, Liddle C, Blanchard SG, Willson TM, Collins JL, Kliewer SA. Orphan nuclear receptors constitutive androstane receptor and pregnane X receptor share xenobiotic and steroid ligands. J. Biol. Chem., 275, 15122–15127 (2000).
- 12) Goetz AK, Bao W, Ren H, Schmid JE, Tully DB, Wood C, Rockett JC, Narotsky MG, Sun G, Lambert GR, Thai SF, Wolf DC, Nesnow S, Dix DJ. Gene expression profiling in the liver of CD-1 mice to characterize the hepatotoxicity of triazole fungicides. *Toxicol. Appl. Pharmacol.*, 215, 274–284 (2006).
- 13) Ohbuchi M, Yoshinari K, Kaneko H, Matsumoto S, Inoue A, Kawamura A, Usui T, Yamazoe Y. Coordinated roles of pregnane X receptor and constitutive androstane receptor in autoinduction of voriconazole metabolism in mice. *Antimicrob. Agents Chemother.*, 57, 1332–1338 (2013).
- 14) Schuetz EG, Guzelian PS. Induction of cytochrome P-450 by glucocorticoids in rat liver. II. Evidence that glucocorticoids regulate induction of cytochrome P-450 by a nonclassical receptor mechanism. *J. Biol. Chem.*, **259**, 2007–2012 (1984).
- 15) Kodama S, Shimura T, Kuribayashi H, Abe T, Yoshinari K. Pregnenolone 16alpha-carbonitrile ameliorates concanavalin A-induced liver injury in mice independent of the nuclear receptor PXR activation. *Toxicol. Lett.*, **271**, 58–65 (2017).
- 16) Marek CJ, Tucker SJ, Konstantinou DK, Elrick LJ, Haefner D, Sigalas C, Murray GI, Goodwin B, Wright MC. Pregnenolone-16alpha-carbonitrile inhibits rodent liver fibrogenesis via PXR (pregnane X receptor)-dependent and PXR-independent mechanisms. *Biochem. J.*, 387, 601–608 (2005).
- 17) Helsley RN, Sui Y, Ai N, Park SH, Welsh WJ, Zhou C. Pregnane X receptor mediates dyslipidemia induced by the HIV protease inhibitor amprenavir in mice. *Mol. Pharmacol.*, 83, 1190–1199 (2013).